 Explicit Control of Feature Relevance and Selection Stability Through Pareto Optimality

Victor Hamer and Pierre Dupont

UCLouvain - ICTEAM/INGI/Machine Learning Group, Louvain-la-Neuve, Belgium.

Introduction

- **Feature selection (FS)** is the act of selecting a small and relevant subset of input features, generally to be included in a predictive model.
- Reduces overfitting ⇒ improves prediction performance.
- Learns fast, compact and easy-to-interpret models.

Selection instability: selected feature subsets may change drastically after marginal changes in the data.

|$FS_1 \cap FS_2| \approx 0 \Rightarrow stab \downarrow$

- Features can be analyzed by experts to gain domain knowledge.
- Instability reduces the interpretability of the predictive models.
- And the trust of domain experts towards the selected features.

State of the literature

- Increasing stability
 - Ensemble feature selection: selects features that are selected the most across different selection runs.
 - Instance weighting: weights training instances according to their importance to feature evaluation.
 - Model selection: takes stability into account in the fitting of the meta-parameters.
 - No fine control of the accuracy-stability trade-off.

- Stability measure \[\phi = 1 - \frac{1}{2} \sum_{f=1}^{d} k_f (1 - p_f) \]
 - \(d\): number of input features
 - \(k_f\): mean number of selected features
 - \(p_f\): feature \(f\) selection frequency

Biased Logistic RFE

\[L = \sum_{i=1}^{n} \log(1 + e^{-y_i (w^T x_i)}) + \lambda \beta ||w||_2 \]

- Drops a fraction of the least significant features at each step.
- Until the desired number of features \((k)\) is met.
- A feature \(f\) with a lower \(\beta_f\) has a higher probability to be selected and vice-versa ⇒ control the accuracy-stability tradeoff by tuning \(\beta\).
- Paper: \(\beta_f \sim F(\alpha, 1)\)
- Results on Prostate \((n=102, d=12600, k=20)\):

Future work

- Extension to multi-task selection.
- Apply differential shrinkage to other losses or regularizations (Elastic Net penalty, deep feature selectors, ...).

Confidence intervals on HV

- Possible (see paper) to define ellipsoidal confidence regions for each Pareto-optimal trade-off ⇒ use the most dominated and most dominant point of each ellipse to compute the bounds of the CI.

Transfer learning

- Sometimes, one wants to find similar feature subsets for different tasks.
- **Transfer learning**: tasks are ordered

Relation

- Stability increase if feature \(f\) is taken at task number \(i\):
 \[2p_f - 1\] with \(p_f\) the selection frequency of feature \(f\) in task \([0, i]\).
- Paper: \(\beta_f \propto \exp(-\alpha \ast p_f)\) ⇒ prioritize more features which selection would increase more the stability.

References

- Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown.

Domain experts can thus tune \(\alpha\) and choose any Pareto-optimal compromise.