RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends

H. Tilmans (IMEC)

Overview

- Mobile phones handsets
 - Intro/Ubiquitous world/Convergence
 - Multiband/Multistandard/Multimedia
 - Challenges for the future/Key drivers for mobile handsets
- Technology trends addressing the handset problem
- RF-MEMS as an enabling technology
 - How can RF-MEMS help?
 - Example of MEMS devices for wireless applications
 - Example of reconfigurable MEMS based functionality (switchable bandpass filter)
 - Passive integration of RF-MEMS
- Conclusions
Wireless Ubiquity: a world where we can access what we want, when we want and where we want..

Source: K. Muhammadand, Front-Ends for Commercial Digitally Controlled Radios”, workshop IMS2007

RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)
A crowded frequency spectrum

- Cellular (GSM-GPRS, UMTS/WCDMA, ...)
- Connectivity (Bluetooth, Wi-Fi, WLAN, WiMAX)
- Broadcast (FM, DVB, ...)
- Positioning (GPS)

Source: M. Brandolini (Broadcom) and F. Svelto, "Reconfigurable Reconfigurable SiSiRF Receiver FrontRF Receiver Front-Ends Ends for Multifor Multi-Standard RadiosStandard Radios", Workshop IMS2007.

Roadmap for RF section in cellular "phones"

Source: EPCOS, "RF-Frontend of Mobile Phones", workshop IMS06
IC trend:
- Miniaturization "More Moore": 90 65 45 32nm (SoC approach)
- New technologies "Beyond CMOS" (e.g., tri-gate, Carbon Nanotube FET)

Packaging trend (SiP is the future):
- Advanced packaging technologies:
 - Smaller pitch (wirebond and flip-chip)
 - Thickness direction integration
 - Stacked die (PiP, PoP,...), 3D packaging
 - Embedded actives (thinned die) in substrate
 - Embedded passives in substrate: Integrated Passive Devices (use of semiconductor processing in stead of surface mount devices)

RF-MEMS technology: a "More than Moore" technology for building RF passives (switches, varicaps, resonators, filters, ...) using semiconductor like technologies

So many discrete passives....
Integrated Passive Device (IPD)

Gain 30% board space

Passive Front-End Module IPD inc.
Example of Integration of passives:
Philips GSM PA module Tx Front-End Module

- 2 actives
- 30 SMD passives

Trend towards fully integrated RF radio module

Multiradio: How to fit all these radio’s in the same size (or smaller) handset?

Future: 2G/3G/3.9G (up to 17 bands) together with UWB, WLAN, RFID, Bluetooth, FM Radio, DVB-H, GPS, …
The Future: The flexible radio (Multi-band/Multi-mode): Introduce reconfigurability

Multi-band/Multi-mode radio architecture:

Today: Duplication of part of the front-end

![Diagram of multi-band/multi-mode radio architecture](image)

The Future: The flexible radio (Multi-band/Multi-mode): Introduce reconfigurability

Multi-band antenna + Antenna switch matrix

- 800-900MHz
- 1700-2200MHz
- 2400MHz
- VHF

Headphone +FM antenna

Direct conversion BASEBAND

- GSM1800 Rx → LNA1
- GSM900 Rx → LNA2
- WLAN5.2 Rx → LNA3
- GSM1800 Tx → PA1
- GSM900 Tx → PA2
- WLAN5.2 Tx → PA3
- UMTS2.2 → LNA4
- PA4
- PCS1900 → LNA5
- PA5

Band/TDD/FDD

- TDD
- FDD

Tunable Antenna Match

- Adaptive Antenna Match

Direct conversion BASEBAND

- DCS1800 Rx → LNA1
- GSM900 Rx → LNA2
- WLAN5.2 Rx → LNA3
- DCS1800 Tx → PA1
- GSM900 Tx → PA2
- WLAN5.2 Tx → PA3
- UMTS2.2 → LNA4
- PA4
- PCS1900 → LNA5
- PA5

Introduce reconfigurability

Direct conversion BASEBAND

- PCS1900 T/R → LNA1
- GSM900 T/R → LNA2
- UMTS2.2 → LNA3
- PA3

Multi-band/Multi-mode radio architecture:

- Multi-band antenna + Antenna switch matrix
- Mode/Band switch
- TDD
- FDD
- LNA1
- LNA2
- LNA3
- PA1
- PA2
- PA3
- PA4
- PA5

Direct conversion BASEBAND

- DCS1800 Rx → LNA1
- GSM900 Rx → LNA2
- WLAN5.2 Rx → LNA3
- DCS1800 Tx → PA1
- GSM900 Tx → PA2
- WLAN5.2 Tx → PA3
- UMTS2.2 → LNA4
- PA4
- PCS1900 → LNA5
- PA5

Introduce reconfigurability

Direct conversion BASEBAND

- PCS1900 T/R → LNA1
- GSM900 T/R → LNA2
- UMTS2.2 → LNA3
- PA3
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

Multi-band/Multi-mode radio architecture:
Where can RF-MEMS be used?

- Large variety of functions (switch, varicap, variometer, filter, resonator, ...)
 replace existing components with cheaper or better MEMS components
- Low loss (high-Q) components
- High linearity
- Reconfigurability is a natural asset for some
 Tunable/adaptive (matching) networks
 Multi-mode/Multi-band switching
- **“Integratability”:**
 - With IPD
 - Above/Below RF-CMOS

Tunable/Reconfigurable radio front-ends are needed to satisfy the constraints on size, battery life, functionality and cost;

RF-MEMS is a key technology enabler:
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

Reconfigurable Radio Front-End
Where can RF-MEMS be used?

Multi-band antenna + Antenna switch matrix

Headphone +FM antenna

Switchplexer

Diplexers

RF-MEMS for Reconfigurable Radio Front-ends
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

RF-MEMS functionalities

- **Components:**
 - Switch
 - Tunable capacitor
 - Tunable inductor
 - MEM resonator
 - BAW resonator (FBAR)

- **Circuits:**
 - FBAR filter
 - Switchable filter
 - Tunable matching network

- **Subsystems**
 - Tunable antenna
 - Switched filter bank
 -

BAW thin film resonators/filters
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

The radio front-end; where can BAW filters be used? diplexer

Multi-band antenna + Antenna switch matrix

Diplexer

SAW filters

DCS1800 Rx

GSM900 Rx

WLAN5.2 Rx

DCS1800 Tx

GSM900 Tx

WLAN5.2 Tx

Ladder-type FBAR filter

Film Bulk Acoustic Resonator (FBAR) (1)

principle of operation/filter structure

- Resonator

\[f \sim \frac{V}{2d} \]

[AIN: \approx 11,000 \text{ m/s}
2.5\mu m \& 2.2GHz]

\[Q \approx 1000 \]

- Filter

Ladder-type FBAR filter

Measured filter response

RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends

H. Tilmans (IMEC)

FBAR filter

Example AVAGO Quintplexer (5 FBAR filters)

- Single antenna connection for PCS duplexer, Cellular duplexer, and GPS filter
- Eliminates antenna switching
- Miniature size
 - 5 x 8 mm Footprint
 - 1.3 mm Max Height
- High Power Rating
 - 0 +33 dBm Max Tx Power
- Lead-Free Construction

Features:

- High Power Rating
- Lead-Free Construction
- 5 x 8 mm Footprint
- 1.3 mm Max Height
- Single antenna connection for PCS duplexer, Cellular duplexer, and GPS filter
- Eliminates antenna switching
- Miniature size
- High Power Rating
- Lead-Free Construction

Tunable FBAR

- Actuation voltage (V)
- Load curve
- 24.5 MHz (0.39% tuning)

AlN layer

<table>
<thead>
<tr>
<th>Substrate</th>
<th>AlN layer</th>
<th>Signal line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top electrode</td>
</tr>
</tbody>
</table>

Substrate

- 800 MHz Band Tx and Rx Rejection
- 2.4 dB
- 3.9 dB
- 55 dB
- 40 dB

Imec/restricted 2008
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

FBAR(2): FBAR filter above BiCMOS for use in WCDMA zero-IF Front-end

FBAR integrated above CMOS
Insertion loss: -3.5dB
Out-of-band rejection: ≈50dB

Mechanical Resonator
Si-MEM resonator
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends

H. Tilmans (IMEC)

Reference resonator (used for LO)

Quartz crystal oscillator (13 MHz)

- advantages: well understood, low cost (<0.5 EUR), temperature stable to 1 ppm, long term stable to 0.1 ppm/year
- disadvantage: significant space consumer on circuit board!

Reference clock/Timing devices:

Quartz crystals Si MEM resonators

Quartz crystals -- Remarkable properties:
- high spectral purity (low phase noise),
- exceptional frequency stability against temperature variations and aging (for wide temperature range (-45°C to +100°C) stability ∆f/f of XO: 10-50ppm, of TCXO: 1ppm (aging 0.1-1ppm/year) and of OCXO: 0.01ppm)

but also drawbacks:
- Relatively large size
- Not "integratable" (with CMOS)
- Cost

New kid on the block: Si MEM resonator

Square Extensional Mode resonator

Better than:
-130dBc/Hz@Δf=1kHz (=GSM spec)

Noise floor:
-150dBc/Hz

Kajakaari (VTT, 2004)
SiTime
MEMS first resonator (below-CMOS)

- 300µm on the side
- 8" SOI wafers in a 0.18micron CMOS fabrication line (10cents/mm²)
- Encapsulated on-chip: low cost plastic injection molded package
- Performance similar to quartz (Q=75,000; frequency error 75ppm)

RF-MEMS switching devices
Tunable capacitors

- Capacitive
- Ohmic
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

The radio front-end: Where can switches/switched caps be used? band switches, T/R switches, matching networks, ...

Multi-band antenna + Antenna switch matrix

Direct conversion BASEBAND

A key element for reconfigurable radio front-ends: (RF-MEMS) Switching device
Switching Devices:
Example 6-7GHz shunt capacitive switch

Imec’s RF-MEMS Technology Platform today:
First step towards an RF-MEMS IPD
RF-MEMS circuitry

Switchable (LC-type) Band Pass Filter

The radio front-end: Where can switchable filters be used? band select filters

Multi-band antenna + Antenna switch matrix

Band/ TDD/FDD

TDD

GPS Rx

Headphone +FM antenna

800-900MHz UHF

Switchable band filters

UMTS2.2

GSM1800 Rx

DCS1800 Rx

Direct conversion BASEBAND

Band/Pillar Tunable/switchable RF filter

Switched filter bank

LNA1

PA1

LNA2

PA2

LNA3

PA3

T/R

DCS1800 Tx

GSM900 Tx

WLAN5.2 Tx

WLAN5.2 Rx

DFD

Adaptive Antenna Match

Coupler

DCS1900 Tx

GSM900 Rx

WLAN5.2 Rx

VHF

UMTS 2.2

GSM900 Rx

800-900MHz

1700-2200MHz

5200MHz

2400MHz

Mobile TV & Radio Rx

2400MHz

VHF

800-900MHz
Example of an IPD:
LC-type BPF (GPS and Galileo)

Source: X. Rotenberg et al., proc. EuMIC2006, Manchester (UK), Sept. 2006

2nd order LC-type BPFs as IPD:
for GPS and Galileo

Source: X. Rotenberg et al., proc. EuMIC2006, Manchester (UK), Sept. 2006

MCM-D IPD:
Two separate filters for both bands increased size

Need for on-chip switchable capacitor
(for C₁ and C₂)

RF-MEMS
Switchable filter in RF-MEMS: between GPS and Galileo bands

Comparison IPD/RF-MEMS
- (+) Reduced size (by factor 2)
- (+) Lower loss
- (-) f_0 (Galileo) is off

Tunable/Switchable BPF
2-COUPLED RESONATOR switchable FILTER by XILM (1)

PARAMETER	DCS 1800	WLAN
Lr (nH) | 2.6 | 2.6
Cr (pF) | 2.85 | 0.28
Cm (pF) | 0.2 | 0.045
n | 5 | 1.85

ADS simulation
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

Tunable/Switchable BPF
2-COUPLED RESONATOR switchable FILTER by IRCOM (2)

Prototype fabricated by XLIM
(on quartz substrate: 525 μm, εr=3.78, tanδ=0.0001) and measured

RF-MEMS on the evolutionary path of passive integration
Technology platform for RF passives:
Stepwise introduction of flexibility/Evolutionary paths

Integration of fixed RF passives
Integrated Passive Device MCM

RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends
H. Tilmans (IMEC)

Example of RF-SiP reconfigurable front-end

Technology platform for RF passives:
Introduction of flexibility/Evolutionary paths

Integration of fixed RF passives
Preferably serve as a carrier substrate for mounting actives (and other discrete passives)
Next evolutionary path: include RF-MEMS (flexible) passives:

Source: imec
RF-MEMS: An enabling technology for Reconfigurable Radio Front-ends

H. Tilmans (IMEC)

Technology platform for RF passives: Introduction of flexibility/Evolutionary paths

Integration of fixed RF passives

Preferably serve as a carrier substrate for mounting actives (and other discrete passives)

Integrated Passive Device MCM

Integrated Passive Device MCM

RF-SIP

Next evolutionary path: include RF-MEMS (flexible) passives:

5 Hybrid RF-MEMS SIP

5 Monolithic RF-MEMS MCM/RF-MEMS SIP

Conclusions and outlook

- Mobile wireless communication systems (handsets) are complex embedded systems where all functional blocks are custom-made for mobility. The combination of miniaturization and functionality is unprecedented compared to other consumer products.

- Next-generation mobile handsets will accommodate multiple wireless standards (3G, WiFi, WiMax, DTV, ..) and multiple frequency bands and will be based on software-defined-radio (SDR), asking for
 - A reconfigurable RF interface/architecture
 - Mode/band switching, Tx/Rx switching
 - More and smaller antennas antenna impedance matching
 - More and higher efficient PAs PA impedance matching
 - Tunable/switchable filters
 - ...

- There is a need for reconfigurable/tunable RF components (L's, C's, filter, switch, ...);

- **RF-MEMS is a key enabling (disruptive) technology** for reconfigurable radio front-ends satisfying functionality requirements, miniaturization, reduction of component count, long battery life, improved electrical performance, low cost, ...

- **High integration level** / "Integratability" (with CMOS and/or as passive platform) is one attractive feature of RF-MEMS technology

- The state of RF-MEMS in handsets:
 - BAW fixed frequency filters based on FBAR/SMR have proven themselves; Fixed frequency filters based on mechanical resonators are still very far from industrialization.
 - Silicon (BAW) resonators are emerging to replace quartz crystal resonators, but very tough stability requirements
 - RF-MEMS switch technologies still requires proof for RF applications. There still remains research work to be done in terms of: Packaging, reliability (duration, switch life cycles), power handling, price (low cost wafer process (foundry compatible) and packaging process needed)
 - Implementation of switchable filter banks are hampered by the development stage of MEMS switches
 - Tunable RF filters are still very far from implementation;
 - ...
Acknowledgements - the IMEC RF-MEMS team

MEMS design: Gerard Klaasse (now Sensata), Wanling Pan (now GTU), Laurent Francis (now UCL), Kris Verheyen, Steve Stoffels
RF design: Xavier Rottenberg, Geert Carchon, Kristof Vaezen, Steven Brebels, Walter De Raedt
Technology: Philippe Soussan, Philip Ekkels, Laurent Francis (now UCL), Gerard Klaasse (now Sensata), Kris Verheyen, Philip Nolmans, Henri Jansen (now UT), Ann Witvrouw
Packaging: Anne Jourdain, Piet De Moor, Serguei Stoukatch, Eric Beyne
Materials and Reliability: Piotr Czarnecki, Stanislaw Kalicinski, Robert Modlinski, Ann Witvrouw, Ingrid De Wolf
System design: Kristof Vaezen, Piet Wambacq