Price dynamics on a stock market with asymmetric information

Bernard De Meyer - PSE Université Paris 1
Introduction

- Nathan Rothschild’s story (June 15th, 1815)
Introduction

- Nathan Rothschild’s story (June 15th, 1815)
- Informed agents have the power to influence the future prices.
Introduction

- Nathan Rothschild’s story (June 15th, 1815)
- *Informed agents have the power to influence the future prices.*
- Game theoretical models.
Introduction

- Nathan Rothschild’s story (June 15th, 1815)
- *Informed agents have the power to influence the future prices.*
- Game theoretical models.
- Informational asymmetries are driving the prices.
Introduction

• Nathan Rothschild’s story (June 15th, 1815)

• Informed agents have the power to influence the future prices.

• Game theoretical models.

• Informational asymmetries are driving the prices.
 → The price process should be locally a CMMV
 (Continuous Martingale of Maximal Variation)
General idea

• Informational asymmetries:
General idea

• Informational asymmetries:

 Institutional investors are better informed than private investors
General idea

- Informational asymmetries:

 Institutional investors are better informed than private investors

- Everybody knows who is informed.
General idea

• Informational asymmetries:
 * Institutional investors are better informed than private investors*

• Everybody knows who is informed.
 → *Uninformed agents analyze informed agents’ moves.*
General idea

- Informational asymmetries:
 Institutional investors are better informed than private investors

- Everybody knows who is informed.
 → *Uninformed agents analyze informed agents’ moves.*

- If they use their information in a naive way:
 → *Instantaneous revelation*
General idea

• Informational asymmetries:
 Institutional investors are better informed than private investors

• Everybody knows who is informed.
 → *Uninformed agents analyze informed agents’ moves.*

• If they use their information in a naive way:
 → *Instantaneous revelation*
 → *They lose their strategic advantage*
General idea

• Informational asymmetries:
 Institutional investors are better informed than private investors

• Everybody knows who is informed.
 → *Uninformed agents analyze informed agents’ moves.*

• If they use their information in a naive way:
 → *Instantaneous revelation*
 → *They loose their strategic advantage*

• *Avoiding too fast revelation*
General idea

- Informational asymmetries:
 Institutional investors are better informed than private investors

- Everybody knows who is informed.
 → Uninformed agents analyze informed agents’ moves.

- If they use their information in a naive way:
 → Instantaneous revelation
 → They loose their strategic advantage

- Avoiding too fast revelation=Introducing a noise on their moves.
General idea

- **Informational asymmetries:**

 Institutional investors are better informed than private investors

- Everybody knows who is informed.

 → *Uninformed agents analyze informed agents’ moves.*

- If they use their information in a naive way:

 → *Instantaneous revelation*

 → *They loose their strategic advantage*

- Avoiding too fast revelation=Introducing a noise on their moves.

- Selecting these mixed strategies=Choosing the pace of revelation
General idea

- Informational asymmetries:
 Institutional investors are better informed than private investors

- Everybody knows who is informed.
 → *Uninformed agents analyze informed agents’ moves.*

- If they use their information in a naive way:
 → *Instantaneous revelation*
 → *They loose their strategic advantage*

- Avoiding too fast revelation=Introducing a noise on their moves.

- Selecting these mixed strategies=Choosing the pace of revelation
 → *Martingale optimization problem*
The aim of this presentation:

- At the optimal pace, when informed agents maximize their profit, the price process is a CMMV.
The aim of this presentation:

- At the optimal pace, when informed agents maximize their profit, the price process is a CMMV.
- This result is "robust": it is independent of the market model.
The aim of this presentation:

- At the optimal pace, when informed agents maximize their profit, the price process is a CMMV.
- This result is "robust": it is independent of the market model.

1. Definition of CMMV
The aim of this presentation:

- At the optimal pace, when informed agents maximize their profit, the price process is a CMMV.
- This result is "robust": it is independent of the market model.

1. Definition of CMMV
2. The market as a repeated exchange game
The aim of this presentation:

- At the optimal pace, when informed agents maximize their profit, the price process is a CMMV.
- This result is "robust": it is independent of the market model.

1. Definition of CMMV
2. The market as a repeated exchange game
3. The asymptotic of the price process
The aim of this presentation:

- At the optimal pace, when informed agents maximize their profit, the price process is a CMMV.
- This result is "robust": it is independent of the market model.

1. Definition of CMMV
2. The market as a repeated exchange game
3. The asymptotic of the price process
4. The ingredients of the proof
The aim of this presentation:

- At the optimal pace, when informed agents maximize their profit, the price process is a CMMV.
- This result is "robust": it is independent of the market model.

1. Definition of CMMV
2. The market as a repeated exchange game
3. The asymptotic of the price process
4. The ingredients of the proof
5. How do CMMV fit the real data?
Definition of CMMV

- A martingale Π_t is a CMMV if $\Pi_t = f(B_t, t)$ where $B = \text{M.B.}$ and $f(x, t)$ is increasing in x.
Definition of CMMV

A martingale Π_t is a CMMV if $\Pi_t = f(B_t, t)$ where $B=$M.B. and $f(x, t)$ is increasing in x.

Notations:
- $\Delta^2 := \{\}$ of probabilities μ on $(\mathbb{R}, \mathcal{B}_\mathbb{R})$ such that $\int \! x^2 d\mu(x) < \infty$.
Definition of CMMV

• A martingale Π_t is a CMMV if $\Pi_t = f(B_t, t)$ where $B=M.B.$ and $f(x, t)$ is increasing in x.

• Notations:
 - $\Delta^2 := \{\} \text{ of probabilities } \mu \text{ on } (\mathbb{R}, \mathcal{B}_\mathbb{R}) \text{ such that } \int_{\mathbb{R}} x^2 d\mu(x) < \infty.$
 - $[X]$ denotes the law of the r.v. X.

Price dynamics on a stock market with asymmetric information – p. 5/29
Definition of CMMV

• A martingale Π_t is a CMMV if $\Pi_t = f(B_t, t)$ where B = M.B. and $f(x, t)$ is increasing in x.

• Notations:
 - $\Delta^2 := \{\mu\}$ of probabilities μ on $(\mathbb{R}, \mathcal{B}_\mathbb{R})$ such that $\int_\mathbb{R} x^2 d\mu(x) < \infty$.
 - $[X]$ denotes the law of the r.v. X.
 - If $\mu \in \Delta^2$ and $Z \sim \mathcal{N}(0, 1)$, there exists a unique increasing function f_μ such that $[f_\mu(Z)] = \mu$.

Definition of CMMV

- A martingale Π_t is a CMMV if $\Pi_t = f(B_t, t)$ where $B=$M.B. and $f(x,t)$ is increasing in x.

- Notations:
 - $\Delta^2 := \{\mu\}$ of probabilities μ on $(\mathbb{R}, \mathcal{B}_\mathbb{R})$ such that $\int_{\mathbb{R}} x^2 d\mu(x) < \infty$.
 - $[X]$ denotes the law of the r.v. X.
 - If $\mu \in \Delta^2$ and $Z \sim \mathcal{N}(0,1)$, there exists a unique increasing function f_μ such that $[f_\mu(Z)] = \mu$.
 - $\Pi_\mu^t := E[f_\mu(B_1) | (B_s)_{s \leq t}]$ is a CMMV s. th. $[\Pi_1^\mu] = \mu$.

Price dynamics on a stock market with asymmetric information – p. 5/29
Definition of CMMV

• A martingale Π_t is a CMMV if $\Pi_t = f(B_t, t)$ where $B=$M.B. and $f(x, t)$ is increasing in x.

• Notations:
 • $\Delta^2 := \{\}$ of probabilities μ on $(\mathbb{R}, \mathcal{B}_\mathbb{R})$ such that $\int_{\mathbb{R}} x^2 d\mu(x) < \infty$.
 • $[X]$ denotes the law of the r.v. X.
 • If $\mu \in \Delta^2$ and $Z \sim \mathcal{N}(0, 1)$, there exists a unique increasing function f_μ such that $[f_\mu(Z)] = \mu$.
 • $\Pi^\mu_t := E[f_\mu(B_1) \mid (B_s)_{s \leq t}]$ is a CMMV s. th. $[\Pi^\mu_1] = \mu$.
 • $\mu = \mathcal{N} \rightarrow \text{Bachelier}; \mu = \text{Log}\mathcal{N} \rightarrow \text{Black and Scholes}$.
The Market as a game:

- P1 = risk neutral informed investor.
- P2 = remaining part of the market.
The Market as a game:

- \(P_1 = \text{risk neutral informed investor.} \)
- \(P_2 = \text{remaining part of the market.} \)

\(P_1 \) and \(P_2 \) are trading a risky asset \(R \) against a numéraire \(N \).
The Market as a game:

- P_1 is a risk neutral informed investor.
- P_2 is the remaining part of the market.

P_1 and P_2 are trading a risky asset R against a numéraire N.

- Information asymmetry:

 P_1 receives initially a message $m \in M$ with law ν.
 P_2 is not informed about m, he just knows ν.

The Market as a game:

• P1 = risk neutral informed investor. P2 = remaining part of the market. P1 and P2 are trading a risky asset R against a numéraire N.

• Information asymmetry:
 P1 receives initially a message $m \in M$ with law ν
 P2 is not informed about m, he just knows ν.

• Liquidation value.
 At a future date D, m will be publicly revealed.
The Market as a game:

- P1 = risk neutral informed investor.
 P2 = remaining part of the market.
 P1 and P2 are trading a risky asset R against a numéraire N.

- Information asymmetry:
 P1 receives initially a message $m \in M$ with law ν
 P2 is not informed about m, he just knows ν.

- Liquidation value.
 At a future date D, m will be publicly revealed.
 At date D, the value of R on the market will be $L = L(m)$. The value of N will be 1. The function $L(\cdot)$ is known by both players.
The Market as a game:

- P_1 and P_2 are trading a risky asset R against a numéraire N.
- Information asymmetry:

 P_1 receives initially a message $m \in M$ with law ν

 P_2 is not informed about m, he just knows ν.

- Liquidation value.

 At a future date D, m will be publicly revealed.

 At date D, the value of R on the market will be $L = L(m)$. The value of N will be 1. The function $L(.)$ is known by both players.

- The message m can be identified with $L(m)$.

 $\mu = $law of $L(m)$.
The game $\Gamma_n(\mu)$:

- stage 0:

 Nature chooses $L \sim \mu$

 P_1 is informed of L not P_2.

 P_1 and P_2 know μ.

The game $\Gamma_n(\mu)$:

- stage 0:
- n transaction periods before D.

Price dynamics on a stock market with asymmetric information – p. 7/29
The game $\Gamma_n(\mu)$:

- stage 0:
- n transaction periods before D.
- They use a general trading mechanism $\langle I, J, T \rangle$:
 $I, J =$P1’s and P2’s action spaces.
 $T : I \times J \rightarrow \mathbb{R}^2$.
 If choices=(i, j), $T(i, j) = (A_{ij}, B_{ij})$ where A_{ij} and B_{ij} are the numbers of R and N shares that P2 gives to P1.
The game $\Gamma_n(\mu)$:

- stage 0:
- n transaction periods before D.
- They use a general trading mechanism $\langle I, J, T \rangle$:
- At stage q: P1 and P2 chose simultaneously (i_q, j_q).

(i_q, j_q) is then publicly announced.

$y_q = (y_q^R, y_q^N), z_q = (z_q^R, z_q^N)$: P1’s and P2’s portfolios after q

$y_q = y_{q-1} + T(i_q, j_q)$ and $z_q = z_{q-1} - T(i_q, j_q)$
The game $\Gamma_n(\mu)$:

- n transaction periods before D.
- They use a general trading mechanism $\langle I, J, T \rangle$:
 - At stage q: $P1$ and $P2$ chose simultaneously (i_q, j_q). (i_q, j_q) is then publicly announced.

 $y_q = (y_q^R, y_q^N)$, $z_q = (z_q^R, z_q^N)$: $P1$’s and $P2$’s portfolios after q

 $y_q = y_{q-1} + T(i_q, j_q)$ and $z_q = z_{q-1} - T(i_q, j_q)$

- $P1$ aims to maximize the liquidation value of his final portfolio.
 $y_0 = (0, 0)$.
The game $\Gamma_n(\mu)$:

- They use a general trading mechanism $\langle I, J, T \rangle$:
- At stage q: P1 and P2 chose simultaneously (i_q, j_q).
 (i_q, j_q) is then publicly announced.
 $y_q = (y^R_q, y^N_q), z_q = (z^R_q, z^N_q)$: P1’s and P2’s portfolios after q
 $y_q = y_{q-1} + T(i_q, j_q)$ and $z_q = z_{q-1} - T(i_q, j_q)$
- P1 aims to maximize the liquidation value of his final portfolio.
 $y_0 = (0, 0)$.
- P2=coalition of agents. Payoff function?
The game \(\Gamma_n(\mu) \):

- At stage \(q \): \(P1 \) and \(P2 \) chose simultaneously \((i_q, j_q)\).
 \((i_q, j_q)\) is then publicly announced.

\[
y_q = (y^R_q, y^N_q), \quad z_q = (z^R_q, z^N_q) \quad : \text{P1's and P2's portfolios after } q
\]
\[
y_q = y_{q-1} + T(i_q, j_q) \quad \text{and} \quad z_q = z_{q-1} - T(i_q, j_q)
\]

- \(P1 \) aims to maximize the liquidation value of his final portfolio.

\[
y_0 = (0, 0).
\]

- \(P2=\text{coalition of agents}. \) Payoff function? \(P1 \)'s profit=\(P2 \)'s loss
The game $\Omega_n(\mu)$:

- At stage q: P1 and P2 chose simultaneously (i_q, j_q). (i_q, j_q) is then publicly announced.

 $y_q = (y_q^R, y_q^N), z_q = (z_q^R, z_q^N)$: P1’s and P2’s portfolios after q

 $y_q = y_{q-1} + T(i_q, j_q)$ and $z_q = z_{q-1} - T(i_q, j_q)$

- P1 aims to maximize the liquidation value of his final portfolio.
 $y_0 = (0, 0)$.

- P2=coalition of agents. Payoff function? P1’s profit= P2’s loss
 A cautious P1 will play his max-min strategy
The game $\Gamma_n(\mu)$:

- At stage q: P1 and P2 chose simultaneously (i_q, j_q). (i_q, j_q) is then publicly announced.

\[
y_q = (y_q^R, y_q^N), \quad z_q = (z_q^R, z_q^N): P1's \text{ and } P2's \text{ portfolios after } q
\]

\[
y_q = y_{q-1} + T(i_q, j_q) \quad \text{and} \quad z_q = z_{q-1} - T(i_q, j_q)
\]

- P1 aims to maximize the liquidation value of his final portfolio.

\[
y_0 = (0, 0).
\]

- P2=coalition of agents. Payoff function? P1’s profit=P2’s loss

A cautious P1 will play his max-min strategy

=Equilibrium strategy in the 0-sum game where a risk neutral P2 aims to maximize the liquidation value of his final portfolio.

\[
z_0 = (0, 0)
\]
A strategy \(\sigma \) for P1 is \(\sigma = (\sigma_1, \ldots, \sigma_n) \) where
\[
\sigma_q : \mathbb{R} \times (I \times J)^{q-1} \rightarrow \Delta(I).
\]
A strategy σ for P1 is $\sigma = (\sigma_1, \ldots, \sigma_n)$ where $\sigma_q : \mathbb{R} \times (I \times J)^{q-1} \rightarrow \Delta(I)$.

A strategy τ for P2 is $\tau = (\tau_1, \ldots, \tau_n)$ where $\tau_q : (I \times J)^{q-1} \rightarrow \Delta(J)$.
A strategy σ for P1 is $\sigma = (\sigma_1, \ldots, \sigma_n)$ where
$\sigma_q : \mathbb{R} \times (I \times J)^{q-1} \rightarrow \Delta(I)$.

A strategy τ for P2 is $\tau = (\tau_1, \ldots, \tau_n)$ where
$\tau_q : (I \times J)^{q-1} \rightarrow \Delta(J)$.

$(\mu, \sigma, \tau) \rightarrow$ probability $\pi(\mu, \sigma, \tau)$ on $\mathbb{R} \times (I \times J)^n$.
Strategies in $\Gamma_n(\mu)$

- A strategy σ for P1 is $\sigma = (\sigma_1, \ldots, \sigma_n)$ where
 $\sigma_q : \mathbb{R} \times (I \times J)_{q-1} \rightarrow \Delta(I)$.

- A strategy τ for P2 is $\tau = (\tau_1, \ldots, \tau_n)$ where
 $\tau_q : (I \times J)_{q-1} \rightarrow \Delta(J)$.

- $(\mu, \sigma, \tau) \rightarrow$ probability $\pi_{(\mu,\sigma,\tau)}$ on $\mathbb{R} \times (I \times J)^n$

- P1’s payoff: $g_n(\mu, \sigma, \tau) := E_{\pi_{(\mu,\sigma,\tau)}}[y_n^R L + y_n^N]$.
Strategies in $\Gamma_n(\mu)$

- A strategy σ for P1 is $\sigma = (\sigma_1, \ldots, \sigma_n)$ where $\sigma_q : \mathbb{R} \times (I \times J)^{q-1} \rightarrow \Delta(I)$.

- A strategy τ for P2 is $\tau = (\tau_1, \ldots, \tau_n)$ where $\tau_q : (I \times J)^{q-1} \rightarrow \Delta(J)$.

- (μ, σ, τ) → probability $\pi_{(\mu,\sigma,\tau)}$ on $\mathbb{R} \times (I \times J)^n$

- P1’s payoff: $g_n(\mu, \sigma, \tau) := E_{\pi_{(\mu,\sigma,\tau)}}[y_n^R L + y_n^N]$.

- Zero sum game.
A strategy σ for P1 is $\sigma = (\sigma_1, \ldots, \sigma_n)$ where $\sigma_q : \mathbb{R} \times (I \times J)^{q-1} \rightarrow \Delta(I)$.

A strategy τ for P2 is $\tau = (\tau_1, \ldots, \tau_n)$ where $\tau_q : (I \times J)^{q-1} \rightarrow \Delta(J)$.

$(\mu, \sigma, \tau) \rightarrow$ probability $\pi_{(\mu,\sigma,\tau)}$ on $\mathbb{R} \times (I \times J)^n$

P1’s payoff: $g_n(\mu, \sigma, \tau) \equiv E_{\pi_{(\mu,\sigma,\tau)}}[y_n^R L + y_n^N]$.

Zero sum game.

An equilibrium in $\Gamma_n(\mu)$ is a pair (σ^*, τ^*) s. th. $\forall \sigma, \tau : g_n(\mu, \sigma, \tau^*) \leq g_n(\mu, \sigma^*, \tau^*) \leq g_n(\mu, \sigma^*, \tau)$.
Value of $\Gamma_n(\mu)$.

If $\sup_\sigma \inf_\tau g_n(\mu, \sigma, \tau) = \inf_\tau \sup_\sigma g_n(\mu, \sigma, \tau) =: V_n(\mu)$, $V_n(\mu)$ is called the value of $\Gamma_n(\mu)$.
Value of $\Gamma_n(\mu)$.

- If $\sup_{\sigma} \inf_{\tau} g_n(\mu, \sigma, \tau) = \inf_{\tau} \sup_{\sigma} g_n(\mu, \sigma, \tau) =: V_n(\mu)$, $V_n(\mu)$ is called the value of $\Gamma_n(\mu)$.
- If $\Gamma_n(\mu)$ has an equilibrium (σ^*, τ^*), the game has a value $V_n(\mu) = g_n(\mu, \sigma^*, \tau^*)$.
Natural exchange mechanism
A trading mechanism \(\langle I, J, T \rangle \) is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
- Continuity of the value
A trading mechanism $\langle I, J, T \rangle$ is natural if

- Numéraire scale invariance
 - If trading R against $\$ \text{ or against the cent}$,
 \rightarrow same transactions in value.

- Invariance with respect to the riskless part of the risky asset.

- Existence of the value

- Positive value of information.

- Continuity of the value
A trading mechanism $⟨I, J, T⟩$ is natural if

- Numéraire scale invariance
 \[\Rightarrow \forall \alpha > 0, \forall X : V_1([\alpha \cdot X]) = \alpha \cdot V_1([X]) \]

- Invariance with respect to the riskless part of the risky asset.

- Existence of the value

- Positive value of information.

- Continuity of the value
A trading mechanism \(\langle I, J, T \rangle \) is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
 - If trading \(R \) or \(R + $100 \) against $ \(\rightarrow \) same transactions in value.
- Existence of the value
- Positive value of information.
- Continuity of the value
A trading mechanism $\langle I, J, T \rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
 - $\Rightarrow \forall \text{ constant } \beta, \forall X : V_1([X + \beta]) = V_1([X])$
- Existence of the value
- Positive value of information.
- Continuity of the value
A trading mechanism $\langle I, J, T \rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
 - $\forall \mu \in \Delta^2, \Gamma_n(\mu)$ has an equilibrium.
- Positive value of information.
- Continuity of the value
A trading mechanism $\langle I, J, T \rangle$ is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
 - $\exists \mu \in \Delta^2 : V_1(\mu) > 0$
- Continuity of the value
A trading mechanism \(\langle I, J, T \rangle \) is natural if

- Numéraire scale invariance
- Invariance with respect to the riskless part of the risky asset.
- Existence of the value
- Positive value of information.
- Continuity of the value

\[\exists p \in [1, 2[, \exists A \text{ s. th. } \forall \text{ v.a. } X, Y : \quad |V_1([X]) - V_1([Y])| \leq A \|X - Y\|_{L^p} \]
• How can we define the price of R at stage q?
The price at stage \(q \)

- How can we define the price of \(R \) at stage \(q \)?
- Possibility 1: \(\frac{-B_{i_q j_q}}{A_{i_q j_q}} \)
The price at stage q

• How can we define the price of R at stage q?
• Possibility 1: $\frac{-B_{iqjq}}{A_{iqjq}}$
 \rightarrow problem if $A_{iqjq} = 0$.
The price at stage q

- How can we define the price of R_t at stage q?
- Possibility 1: $\frac{-B_{iqjq}}{A_{iqjq}}$
 \[\rightarrow \text{problem if } A_{iqjq} = 0. \]
- Possibility 2: price $= L^n_q := E[L|i_s, j_s; s \leq q]$.
 It is the price at which P2 would agree to trade with another uninformed player.
Theorem 1:

- If the exchange mechanism is natural
- If, \(\forall n, (\sigma^n, \tau^n) \) is an equilibrium in \(\Gamma_n(\mu) \)
- If \(L^n_q := E_{\pi(\mu, \sigma^n, \tau^n)}[L | i_s, j_s; s \leq q] \) and \(\Pi^n_t := L^n_{[nt]} \)

Then \(\Pi^n \) converges in finite-dimensional law to the CMMV \(\Pi^\mu \).
Theorem 1:

- If the exchange mechanism is natural
- if, $\forall n$, (σ^n, τ^n) is an equilibrium in $\Gamma_n(\mu)$
- if $L^n_q := E_{\pi(\mu, \sigma^n, \tau^n)}[L| i_s, j_s; s \leq q]$ and $\Pi^n_t := L^n_{[nt]}$

Then Π^n converges in finite-dimensional law to the CMMV Π^μ.

The asymptotic price process is thus independent of the trading mechanism!
P1’s martingale optimization problem

\[M_n(\mu) := \{ \} \text{ of martingales } X \text{ of length } n + 1 \text{ s. th. } [X_{n+1}] = \mu. \]
P1’s martingale optimization problem

- \(\mathcal{M}_n(\mu) := \{\} \) of martingales \(X \) of length \(n + 1 \) s. th. \([X_{n+1}] = \mu \).

Example: \(L^n \in \mathcal{M}(\mu) \) where \(L^n \) is defined as

\[
L^n := E[L|i_s, j_s; s \leq q] \quad \text{and} \quad L^n_{n+1} := L.
\]
P1’s martingale optimization problem

• $\mathcal{M}_n(\mu) := \{\} \text{ of martingales } X \text{ of length } n+1 \text{ s. th. } [X_{n+1}] = \mu.$

 Example: $L^n \in \mathcal{M}(\mu)$ where L^n is defined as $L^n_q := E[L|i_s, j_s; s \leq q]$ and $L^n_{n+1} := L.$

• P1 controls $L^n_q.$
 → He can choose any martingale $L^n \in \mathcal{M}_n(\mu).$
P1’s martingale optimization problem

- Let X be in $\mathcal{M}_n(\mu)$.
P1’s martingale optimization problem

• Let X be in $\mathcal{M}_n(\mu)$.
 • stage 0: Nature uses X to select $L := X_{n+1}$
P1’s martingale optimization problem

- Let X be in $\mathcal{M}_n(\mu)$.
 - stage 0: Nature uses X to select $L := X_{n+1}$
 - $P1$ observes X
P1’s martingale optimization problem

• Let X be in $\mathcal{M}_n(\mu)$.
 • stage 0: Nature uses X to select $L := X_{n+1}$
 • P1 observes X
 • At stage q, P1 plays $i_q(X_s, s \leq q)$.

Price dynamics on a stock market with asymmetric information – p. 14/29
P1’s martingale optimization problem

• Let X be in $\mathcal{M}_n(\mu)$.
 • stage 0: Nature uses X to select $L := X_{n+1}$
 • P1 observes X
 • At stage q, P1 plays $i_q(X_s, s \leq q)$.
 • More information to P2: after stage q, P2 is informed of X_q.

Let X be in $\mathcal{M}_n(\mu)$.

- stage 0: Nature uses X to select $L := X_{n+1}$
- $P1$ observes X
- At stage q, $P1$ plays $i_q(X_s, s \leq q)$.
- More information to $P2$: after stage q, $P2$ is informed of X_q.
- $i_q(.)$ is then chosen to maximize stage q payoff.

No revelation problem anymore
P1’s martingale optimization problem

Let X be in $\mathcal{M}_n(\mu)$.

- stage 0: Nature uses X to select $L := X_{n+1}$
- P1 observes X
- At stage q, P1 plays $i_q(X_s, s \leq q)$.
- More information to P2: after stage q, P2 is informed of X_q.
- $i_q(.)$ is then chosen to maximize stage q payoff.
- No revelation problem anymore

The game at stage q is then $\Gamma_1([X_q|X_s, s < q])$

where $[X_q|X_s, s < q] = \text{law of } X_q \text{ conditional to } X_s, s < q$.
P1’s martingale optimization problem

- Let X be in $\mathcal{M}_n(\mu)$.
 - P1 observes X
 - At stage q, P1 plays $i_q(X_s, s \leq q)$.
 - More information to P2: after stage q, P2 is informed of X_q.
 - $i_q(.)$ is then chosen to maximize stage q payoff.
 - No revelation problem anymore
 - The game at stage q is then $\Gamma_1([X_q|X_s, s < q])$
 where $[X_q|X_s, s < q] = \text{law of } X_q \text{ conditional to } X_s, s < q$.
 - If $i_q(.)$ is optimal in $\Gamma_1([X_q|X_s, s < q])$, P1 gets at least $V_n(X) := \sum_{q=1}^{n} E[V_1([X_q|X_s, s < q])]$
P1’s martingale optimization problem

• Let X be in $\mathcal{M}_n(\mu)$.

• More information to P2: after stage q, P2 is informed of X_q.

• $i_q(.)$ is then chosen to maximize stage q payoff.

 No revelation problem anymore

• The game at stage q is then $\Gamma_1([X_q|X_s, s < q])$

 where $[X_q|X_s, s < q] = \text{law of } X_q \text{ conditional to } X_s, s < q$.

• If $i_q(.)$ is optimal in $\Gamma_1([X_q|X_s, s < q])$, P1 gets at least

 $\mathcal{V}_n(X) := \sum_{q=1}^{n} E[V_1([X_q|X_s, s < q])]$

• $\overline{\mathcal{V}}_n(\mu) := \sup\{\mathcal{V}_n(X) : X \in \mathcal{M}_n(\mu)\}$

 $\Rightarrow V_n(\mu) \geq \overline{\mathcal{V}}_n(\mu)$
P1’s martingale optimization problem

- Proposition: $V_n(\mu) = \overline{V}_n(\mu)$.
 If (σ^n, τ^n) is an equilibrium in $\Gamma_n(\mu)$ if $L^n_q := E_{\pi(\mu, \sigma^n, \tau^n)}[L|i_s, j_s; s \leq q]$ and $L^n_{n+1} := L$ then L^n is optimal in the problem $\overline{V}_n(\mu)$.

- $\mathcal{V}_n(X) := \sum_{q=1}^{n} E[V_1([X_q|X_s, s < q])]$

- $\overline{V}_n(\mu) := \sup\{\mathcal{V}_n(X) : X \in \mathcal{M}_n(\mu)\}$.
P1’s martingale optimization problem

Proposition: \(V_n(\mu) = \overline{V}_n(\mu) \).

If \((\sigma^n, \tau^n)\) is an equilibrium in \(\Gamma_n(\mu) \)

\[
L^n_q := E_{\pi(\mu, \sigma^n, \tau^n)}[L|i_s, j_s; s \leq q]
\]

and \(L^n_{n+1} := L \)

then \(L^n \) is optimal in the problem \(\overline{V}_n(\mu) \).

\(\mathcal{V}_n(X) := \sum_{q=1}^{n} E[V_1([X_q|X_s, s < q])] \)

\(\overline{V}_n(\mu) := \sup\{\mathcal{V}_n(X) : X \in \mathcal{M}_n(\mu)\} \).

**Invariance with respect to the riskless part of \(R \)

\(\Rightarrow \) \(\forall \) constant \(\beta \) : \(V_1([X + \beta]) = V_1([X]) \),
P1’s martingale optimization problem

- **Proposition:** \(V_n(\mu) = \overline{V}_n(\mu) \).

 If \((\sigma^n, \tau^n)\) is an equilibrium in \(\Gamma_n(\mu) \)

 if \(L^n_q := E_{\pi(\mu, \sigma^n, \tau^n)} [L|i_s, j_s; s \leq q] \) and \(L^n_{n+1} := L \)

 then \(L^n \) is optimal in the problem \(\overline{V}_n(\mu) \).

- \(\mathcal{V}_n(X) := \sum_{q=1}^{n} E[V_1([X_q|X_s, s < q])] \)

- \(\overline{V}_n(\mu) := \sup\{ \mathcal{V}_n(X) : X \in \mathcal{M}_n(\mu) \} \).

- **Invariance with respect to the riskless part of \(R \)**

 \(\Rightarrow \) \(\forall \) constant \(\beta : V_1([X + \beta]) = V_1([X]) \),

 \(\Rightarrow \)

 \(V_1[X_q|X_s, s < q] = V_1[X_q - X_{q-1}|X_s, s < q] \)
Let $M : \Delta^2 \rightarrow \mathbb{R}$ and $X \in \mathcal{M}_n(\mu)$,

The M-variation of X is defined as:

$$\mathcal{V}^M_n(X) := \sum_{q=1}^n E[M([X_q - X_{q-1}|X_s, s < q])]$$
Let $M : \Delta^2 \to \mathbb{R}$ and $X \in \mathcal{M}_n(\mu)$,

The M-variation of X is defined as:

$$\mathcal{V}^M_n(X) := \sum_{q=1}^{n} E[M([X_q - X_{q-1}|X_s, s < q])]$$

$$\mathcal{V}_n(X) = \mathcal{V}^{V_1}_n(X)$$
Let $M : \Delta^2 \to \mathbb{R}$ and $X \in \mathcal{M}_n(\mu)$,

The M-variation of X is defined as:

$V_n^M(X) := \sum_{q=1}^{n} E[M([X_q - X_{q-1}|X_s, s < q])]$

- $V_n(X) = V_{n1}^V(X)$
- $V_n^M(\mu) := \sup\{V_n^M(X) : X \in \mathcal{M}_n(\mu)\}$
M-variation

- Let $M : \Delta^2 \to \mathbb{R}$ and $X \in \mathcal{M}_n(\mu)$,

 The M-variation of X is defined as:

 $$V_n^M(X) := \sum_{q=1}^n E[M(X_q - X_{q-1}|X_s, s < q)]$$

- $V_n(X) = V_n^{V_1}(X)$

- $\overline{V}_n^M(\mu) := \sup\{V_n^M(X) : X \in \mathcal{M}_n(\mu)\}$

- **Mass Transportation Problem**:

 $$\gamma(\mu) := \sup\{E[ZL] : Z \sim \mathcal{N}(0, 1); L \sim \mu\}$$
Let $M : \Delta^2 \to \mathbb{R}$ and $X \in \mathcal{M}_n(\mu)$,

The M-variation of X is defined as:

$$\mathcal{V}_n^M(X) := \sum_{q=1}^n E[M([X_q - X_{q-1}|X_s, s < q])]$$

- $\mathcal{V}_n(X) = \mathcal{V}_n^{V_1}(X)$
- $\overline{\mathcal{V}}_n^M(\mu) := \sup\{\mathcal{V}_n^M(X) : X \in \mathcal{M}_n(\mu)\}$
- **Mass Transporation Problem:**

$$\gamma(\mu) := \sup\{E[ZL] : Z \sim \mathcal{N}(0, 1); L \sim \mu\}$$

$\rightarrow L = increasing\ function\ in\ Z$.
Let $M : \Delta^2 \to \mathbb{R}$ and $X \in \mathcal{M}_n(\mu)$, the M-variation of X is defined as:

\[V_n^M(X) := \sum_{q=1}^{n} E[M([X_q - X_{q-1}|X_s, s < q])] \]

- $V_n(X) = V_{n1}^v(X)$

- $\overline{V}_n^M(\mu) := \sup\{V_n^M(X) : X \in \mathcal{M}_n(\mu)\}$

Mass Transporation Problem:

$\gamma(\mu) := \sup\{E[ZL] : Z \sim \mathcal{N}(0, 1); L \sim \mu\}$

$\Rightarrow L = increasing\ function\ in\ Z$.

$\Rightarrow L = f_\mu(Z)\ and\ \gamma(\mu) = E[Zf_\mu(Z)]$
Theorem 2:

If $\forall \alpha > 0, \forall Y : M([\alpha Y]) = \alpha M([Y])$, if $\exists p \in [1, 2[, A \in \mathbb{R} : \forall X, Y : |(M([X]) - M([Y])| \leq A \|X - Y\|_{L^p}$

Then $\frac{\sum_{n}^{M(\mu)}}{\sqrt{n}} \xrightarrow{n \to \infty} \rho \gamma(\mu)$.

where $\rho := \sup\{M([X]) : \|X\|_{L^2} \leq 1\}$
Theorem 2:

- If \(\forall \alpha > 0, \forall Y : M([\alpha Y]) = \alpha M([Y]) \), if \(\exists \rho \in [1, 2[, A \in \mathbb{R} : \forall X, Y : |(M([X]) - M([Y])| \leq A\|X - Y\|_{L^p} \)

Then \(\frac{\nabla^M_n (\mu)}{\sqrt{n}} \xrightarrow{n \to \infty} \rho \gamma(\mu) \).

where \(\rho := \sup \{ M([X]) : \|X\|_{L^2} \leq 1 \} \)

- If \(\rho > 0 \) and if, \(\forall n, L^n \in \mathcal{M}_n(\mu) \) satisfies

\(\nabla^M_n (L^n) = \nabla^M_n (\mu) \)

Then \(\Pi^n_t := L^n_{\lfloor nt \rfloor} \) converges in finite-dimensional laws to the CMMV \(\Pi^\mu_t \)
• The limit Π^μ does not depend on M
Remarks

• The limit Π^μ does not depend on M

• This result explains the terminology CMMV
Remarks

• The limit Π^μ does not depend on M
• This result explains the terminology CMMV
• The ingredients of the proof are
 • duality
 • CLT
 • martingale embedding techniques.
How robust is this class of dynamics?

• It is independent of T
How robust is this class of dynamics?

- It is independent of T
- If one adds derivatives?
How robust is this class of dynamics?

- It is independent of T
- If one adds derivatives?
- If P2 is risk averse?
How robust is this class of dynamics?

- It is independent of T
- If one adds derivatives?
- If P2 is risk averse? \rightarrow Non zero-sum
How robust is this class of dynamics?

- It is independent of T
- If one adds derivatives?
- If P2 is risk averse? → Non zero-sum
 ∃ an equilibrium in the risk averse game, where, up to a change of probability, P1’s strategy is optimal in a risk neutral game.
How robust is this class of dynamics?

- It is independent of T
- If one adds derivatives?
- If P_2 is risk averse? \rightarrow Non zero-sum
 \exists an equilibrium in the risk averse game, where, up to a change of probability, P_1’s strategy is optimal in a risk neutral game.
 \rightarrow CMMV under a change of probability
How do CMMV fit the real data?

• Conjecture: Under the risk neutral probability, the actualized price process is locally a CMMV
How do CMMV fit the real data?

• Conjecture: *Under the risk neutral probability, the actualized price process is locally a CMMV*

• *This can be tested on real data.*
How do CMMV fit the real data?

• Conjecture: Under the risk neutral probability, the actualized price process is locally a CMMV.

• This can be tested on real data.

 Black and Scholes model is a CMMV.
How do CMMV fit the real data?

- Conjecture: *Under the risk neutral probability, the actualized price process is locally a CMMV*

- This can be tested on real data.

 Black and Scholes model is a CMMV.

- *Is CMMV a good model when there is a volatility smile?*
CMMV with a volatility smile

- $S_t = \text{Forward price of an underlying asset at time } t.$
CMMV with a volatility smile

- \(S_t = \text{Forward price of an underlying asset at time } t. \)
- \(C_{K,t} = \text{forward price of a european Call with strike } K, \text{ maturity 1.} \)
CMMV with a volatility smile

• $S_t = \text{Forward price of an underlying asset at time } t.$

• $C_{K,t} = \text{forward price of a european Call with strike } K, \text{ maturity 1.} \quad C_{K,0} = E[(S_1 - K)^+]$
CMMV with a volatility smile

- $S_t = \text{Forward price of an underlying asset at time } t.$
- $C_{K,t} = \text{forward price of a European Call with strike } K, \text{ maturity 1.}$
 $C_{K,0} = E[(S_1 - K)^+]$

- From date 0 observations, we can recover:
 - the law μ of S_1
CMMV with a volatility smile

- $S_t = \text{Forward price of an underlying asset at time } t.$
- $C_{K,t} = \text{forward price of a european Call with strike } K, \text{ maturity 1.}$

 $C_{K,0} = E[(S_1 - K)^+]$

- From date 0 observations, we can recover:
 - the law μ of S_1
 - f_μ
CMMV with a volatility smile

- $S_t =$ Forward price of an underlying asset at time t.
- $C_{K,t} =$ forward price of a european Call with strike K, maturity 1.

 $C_{K,0} = E[(S_1 - K)^+]$

- From date 0 observations, we can recover:
 - the law μ of S_1
 - f_μ
 - $f(x, t)$ s.th. $S_t = f(B_t, t)$.

Price dynamics on a stock market with asymmetric information – p. 21/29
CMMV with a volatility smile

- $S_t =$ *Forward price of an underlying asset at time* t.
- $C_{K,t} =$ *forward price of a european Call with strike* K, *maturity* 1.

 $C_{K,0} = E[(S_1 - K)^+]$

- *From date 0 observations, we can recover:*
 - *the law* μ *of* S_1
 - f_{μ}
 - $f(x, t)$ *s.th.* $S_t = f(B_t, t)$.

- *At time* t:
 - *we observe* $S_t = f(B_t, t)$.
CMMV with a volatility smile

- $C_{K,t} =$ forward price of a european Call with strike K, maturity 1.

 $C_{K,0} = E[(S_1 - K)^+]$

- From date 0 observations, we can recover:
 - the law μ of S_1
 - f_μ
 - $f(x, t)$ s.th. $S_t = f(B_t, t)$.

- At time t:
 - we observe $S_t = f(B_t, t)$.
 - we get B_t
CMMV with a volatility smile

- From date 0 observations, we can recover:
 - the law μ of S_1
 - f_μ
 - $f(x,t)$ s.th. $S_t = f(B_t, t)$.

- At time t:
 - we observe $S_t = f(B_t, t)$.
 - we get B_t
 - $C_{K,t} = E[(S_1 - K)^+ | B_{s,s<t}]$
CMMV with a volatility smile

• From date 0 observations, we can recover:
 • the law μ of S_1
 • f_μ
 • $f(x, t)$ s.th. $S_t = f(B_t, t)$.

• At time t:
 • we observe $S_t = f(B_t, t)$.
 • we get B_t
 • $C_{K,t} = E[(S_1 - K)^+|B_{s,s<t}] = E[(f_\mu(B_1) - K)^+|B_t]$
From date 0 observations, we can recover:

- the law \(\mu \) of \(S_1 \)
- \(f_\mu \)
- \(f(x, t) \) s.th. \(S_t = f(B_t, t) \).

At time \(t \):

- we observe \(S_t = f(B_t, t) \).
- we get \(B_t \)
- \(C_{K,t} = E[(S_1 - K)^+ | B_{s,s<t}] = E[(f_\mu(B_1) - K)^+ | B_t] \)
- If the CMMV model is right, we should have \(C_{K,t} = g_{t,S_t}(K) \).
European Call on CAC40
Date 0: 35 days to maturity
European Call on CAC40
Date 20: 15 days to maturity

Price dynamics on a stock market with asymmetric information – p. 23/29
European Call on CAC40

Date 20: 15 days to maturity
Proof of theorem 2

\[\limsup \frac{\gamma_n^M(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu). \]
Proof of theorem 2

\[\limsup \frac{\mathbb{V}_n^M(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu). \]

- \[B^q_r := \{ X : \|X\|_{L^q} \leq r \} \]
- \[B^* := B^2_\rho \cap B^{p'}_{2A} \text{ where } \frac{1}{p} + \frac{1}{p'} = 1 \]
- \[B([X]) := \sup \{ E[XY] : Y \in B^* \} \]
Proof of theorem 2

• \(\lim \sup \frac{\sqrt[n]{v_n^M(\mu)}}{\sqrt{n}} \leq \rho \gamma(\mu). \)

• \(B^q_r := \{ X : \|X\|_{L^q} \leq r \} \)

• \(B^* := B^2_\rho \cap B^{p'}_{2A} \) where \(1/p + 1/p' = 1 \)

• \(B([X]) := \sup \{ E[XY] : Y \in B^* \} \)

• **Duality lemma:** For all \(X : M([X]) \leq B([X]) \)
Proof of theorem 2

• \(\lim \sup \frac{\overline{\nu}_n^M(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu) \).

• \(B^q_r := \{ X : \|X\|_{L^q} \leq r \} \)

• \(B^* := B^2_\rho \cap B^{p'}_{2A} \) where \(\frac{1}{p} + \frac{1}{p'} = 1 \)

• \(B([X]) := \sup \{ E[XY] : Y \in B^* \} \)

• **Duality lemma:** For all \(X : M([X]) \leq B([X]) \)

• If \(L \in \mathcal{M}_n(\mu) : \nu_n^M(L) \leq \nu_n^B(L) \).
Proof of theorem 2

- \(\limsup \frac{\sqrt[n]{V_n^M(\mu)}}{\sqrt{n}} \leq \rho\gamma(\mu) \).

- \(B_r^q := \{ X : \|X\|_{L^q} \leq r \} \)

- \(B^* := B^2_\rho \cap B^{p'}_{2A} \) where \(1/p + 1/p' = 1 \)

- \(B([X]) := \sup\{ E[XY] : Y \in B^* \} \)

- **Duality lemma:** For all \(X : M([X]) \leq B([X]) \)

- If \(L \in M_n(\mu) : V_n^M(L) \leq V_n^B(L) \).

- \(\overline{V}_n^M(\mu) \leq \overline{V}_n^B(\mu) \)
Proof of the duality lemma

• Both M and B are 1-homogeneous

$B := \{X : B([X]) \leq 1\} \subset M := \{X : M([X]) \leq 1\}$
Both M and B are 1-homogeneous

$B := \{ X : B([X]) \leq 1 \} \subset M := \{ X : M([X]) \leq 1 \}$?

$B([X + X']) \leq B([X]) + B([X'])$
Proof of the duality lemma

\[\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \} \]

\[B([X + X']) \leq B([X]) + B([X']) \]

So \(\mathcal{B} \) is convex.
Proof of the duality lemma

• \(\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \}? \)

• \(\mathcal{B} \) is convex.

• \(\mathcal{B}^* := B^2_{\rho} \cap B^p_A \subset B^2_{\rho} \)

\[
B([X]) := \sup \{ E[XY] : Y \in \mathcal{B}^* \} \\
\leq \sup \{ E[XY] : Y \in B^2_{\rho} \} = \rho \|X\|_{L^2}
\]
Proof of the duality lemma

1. $\mathcal{B} := \{X : B([X]) \leq 1\} \subset \mathcal{M} := \{X : M([X]) \leq 1\}$?
2. \mathcal{B} is convex.
3. $B^* := B_\rho^2 \cap B_A^p \subset B_A^p$

$$B([X]) \leq \rho \|X\|_{L^2} \text{ and } B([X]) \leq A \|X\|_{L^p}$$
Proof of the duality lemma

- \(\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \} \)?
- \(\mathcal{B} \) is convex.
- \(B([X]) \leq \rho \| X \|_{L^2} \) and \(B([X]) \leq A \| X \|_{L^p} \)
- \(\big(\frac{B^2}{\rho} \cup \frac{B^p}{A} \big) \subset \mathcal{B} \)
Proof of the duality lemma

- $\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \}$?

- \mathcal{B} is convex.

- $B([X]) \leq \rho \| X \|_{L^2} \quad \text{and} \quad B([X]) \leq A \| X \|_{L^p}$

- $\mathcal{C} := \text{vex}(B_{\frac{1}{\rho}}^2 \cup B_{\frac{1}{A}}^p) \subset \mathcal{B}$
Proof of the duality lemma

\[\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \} \]

\[B([X]) \leq \rho \|X\|_{L^2} \quad \text{and} \quad B([X]) \leq A \|X\|_{L^p} \]

\[\mathcal{C} := \text{vex}(\mathcal{B}^2_{\frac{2}{\rho}} \cup \mathcal{B}^p_{\frac{1}{A}}) \subset \mathcal{B} \]

If \(X \not\in \mathcal{C} : \exists Y : E[XY] > \alpha := \sup\{ E[YZ] : Z \in \mathcal{C} \} \).
Proof of the duality lemma

- \(\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \} \)?

- \(B([X]) \leq \rho \| X \|_{L^2} \) and \(B([X]) \leq A \| X \|_{L^p} \)

- \(\mathcal{C} := \text{vex}(B_{\frac{1}{\rho}}^{2} \cup B_{\frac{1}{A}}^{p}) \subset \mathcal{B} \)

- If \(X \notin \mathcal{C} : \exists Y : E[XY] > \alpha := \sup\{ E[YZ] : Z \in \mathcal{C} \} \).

So \(\alpha \geq \frac{1}{\rho} \| Y \|_{L^2} \)
Proof of the duality lemma

- $\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \}$?
- $B([X]) \leq \rho \|X\|_{L^2}$ and $B([X]) \leq A \|X\|_{L^p}$
- $\mathcal{C} := \text{vex}(B_{\frac{1}{\rho}}^2 \cup B_{\frac{1}{A}}^p) \subset \mathcal{B}$
- If $X \notin \mathcal{C}$: $\exists Y : E[XY] > \alpha := \sup \{ E[YZ] : Z \in \mathcal{C} \}$.
 So $\alpha \geq \frac{1}{\rho} \|Y\|_{L^2}$ and $\alpha \geq \frac{1}{A} \|Y\|_{L^{p'}}$
Proof of the duality lemma

- \(\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \} \)

- \(B([X]) \leq \rho \|X\|_{L^2} \) and \(B([X]) \leq A \|X\|_{L^p} \)

- \(\mathcal{C} := \text{vex}(B_{\frac{1}{\rho}}^2 \cup B_{\frac{1}{A}}^p) \subset \mathcal{B} \)

- If \(X \notin \mathcal{C} : \exists Y : E[XY] > \alpha := \sup \{ E[YZ] : Z \in \mathcal{C} \} \).

 So \(\alpha \geq \frac{1}{\rho} \|Y\|_{L^2} \) and \(\alpha \geq \frac{1}{A} \|Y\|_{L^p'} \)

Thus \(\frac{Y}{\alpha} \in \mathcal{B}^* := B_{\rho}^2 \cap B_{A}^{p'} \)
Proof of the duality lemma

- \(\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \} \)?
- \(B([X]) \leq \rho \|X\|_{L^2} \) and \(B([X]) \leq A \|X\|_{L^p} \)
- \(\mathcal{C} := \text{vex}(B^2_{1/\rho} \cup B^p_{1/A}) \subset \mathcal{B} \)
- If \(X \not\in \mathcal{C} : \exists Y : E[XY] > \alpha := \sup \{ E[YZ] : Z \in \mathcal{C} \} \).
 So \(\alpha \geq \frac{1}{\rho} \|Y\|_{L^2} \) and \(\alpha \geq \frac{1}{A} \|Y\|_{L^p'} \)
 Thus \(\frac{Y}{\alpha} \in B^* := B^2_{\rho} \cap B^p_{A} \)
 \(B([X]) \geq E\left[X \frac{Y}{\alpha}\right] > 1 \). Therefore: \(X \not\in \mathcal{B} \):
Proof of the duality lemma

\[\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \}? \]

\[B([X]) \leq \rho \| X \|_{L^2} \quad \text{and} \quad B([X]) \leq A \| X \|_{L^p} \]

\[\mathcal{C} := \text{vex}(B_2^2 \cup B_1^p) \subset \mathcal{B} \]

If \(X \not\in \mathcal{C} : \exists Y : E[XY] > \alpha := \sup \{ E[YZ] : Z \in \mathcal{C} \}. \]

So \(\alpha \geq \frac{1}{\rho} \| Y \|_{L^2} \) and \(\alpha \geq \frac{1}{A} \| Y \|_{L^p} \)

Thus \(\frac{Y}{\alpha} \in \mathcal{B}^* := B_\rho^2 \cap B_A^p \)

\[B([X]) \geq E[X \frac{Y}{\alpha}] > 1. \quad \text{Therefore:} \quad X \not\in \mathcal{B}: \quad \mathcal{C} = \mathcal{B}. \]
Proof of the duality lemma

• \(\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \} \)?

• \(B([X]) \leq \rho \|X\|_{L^2} \) and \(B([X]) \leq A \|X\|_{L^p} \)

• \(\mathcal{C} := \text{vex}(B^2_{\frac{1}{\rho}} \cup B^p_{\frac{1}{A}}) = \mathcal{B} \)

• \(\rho := \sup\{ M([X]) : X \in B^2_1 \}. \) So \(M([X]) \leq \rho \|X\|_{L^2} \).
Proof of the duality lemma

• \(B := \{ X : B([X]) \leq 1 \} \subset M := \{ X : M([X]) \leq 1 \} \)?

• \(B([X]) \leq \rho \| X \|_{L^2} \) and \(B([X]) \leq A \| X \|_{L^p} \)

• \(C := \text{vex}(B^2_1 \cup B^p_1) = B \)

• \(\rho := \sup \{ M([X]) : X \in B^2_1 \} \). So \(M([X]) \leq \rho \| X \|_{L^2} \).

• If \(X \in B \): \(\exists X' \in B^2_1, \exists X'' \in B^p_1, \exists \lambda', \lambda'' \geq 0 : X = \lambda' X' + \lambda'' X'' \) and \(1 = \lambda' + \lambda'' \)
Proof of the duality lemma

\(B := \{ X : B([X]) \leq 1 \} \subset M := \{ X : M([X]) \leq 1 \}? \)

\(B([X]) \leq \rho \| X \|_{L^2} \) and \(B([X]) \leq A \| X \|_{L^p} \)

\(C := \text{vex}(B^2_\frac{1}{\rho} \cup B^p_\frac{1}{A}) = B \)

\(\rho := \sup\{ M([X]) : X \in B^2_1 \}. \) So \(M([X]) \leq \rho \| X \|_{L^2}. \)

If \(X \in B: \exists X' \in B^2_\frac{1}{\rho}, \exists X'' \in B^p_\frac{1}{A}, \exists \lambda', \lambda'' \geq 0 : X = \lambda' X' + \lambda'' X'' \text{ and } 1 = \lambda' + \lambda'' \)

\(M([X]) \leq M([\lambda' X']) + A \| \lambda'' X'' \|_{L^p} \)
Proof of the duality lemma

• $\mathcal{B} := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \}$?

• $B([X]) \leq \rho \|X\|_{L^2}$ and $B([X]) \leq A \|X\|_{L^p}$

• $\mathcal{C} := vex\left(B_1^{2 \rho} \cup B_1^{pA} \right) = \mathcal{B}$

• $\rho := \sup\{ M([X]) : X \in B_1^{2} \}$. So $M([X]) \leq \rho \|X\|_{L^2}$.

• If $X \in \mathcal{B}$: $\exists X' \in B_1^{2 \rho}, \exists X'' \in B_1^{pA}, \exists \lambda', \lambda'' \geq 0$:

 $X = \lambda'X' + \lambda''X''$ and $1 = \lambda' + \lambda''$

• $M([X]) \leq M([\lambda'X']) + A\|\lambda''X''\|_{L^p}$

 $\leq \rho \lambda'\|X'\|_{L^2} + A\lambda''\|X''\|_{L^p}$
Proof of the duality lemma

Let $B := \{ X : B([X]) \leq 1 \} \subset \mathcal{M} := \{ X : M([X]) \leq 1 \}$.

- $B([X]) \leq \rho \|X\|_{L^2}$ and $B([X]) \leq A \|X\|_{L^p}$

Let $C := \text{vex}(B_{\frac{1}{\rho}}^2 \cup B_{\frac{1}{A}}^p) = B$

$\rho := \sup \{ M([X]) : X \in B_{\frac{1}{\rho}}^2 \}$. So $M([X]) \leq \rho \|X\|_{L^2}$.

If $X \in B$: $\exists X' \in B_{\frac{1}{\rho}}^2, \exists X'' \in B_{\frac{1}{A}}^p, \exists \lambda', \lambda'' \geq 0$:

$X = \lambda' X' + \lambda'' X''$ and $1 = \lambda' + \lambda''$

- $M([X]) \leq M([\lambda' X']) + A \|\lambda'' X''\|_{L^p}$

$\leq \rho \lambda' \|X'\|_{L^2} + A \lambda'' \|X''\|_{L^p'}$

$\leq \lambda' + \lambda'' = 1$
Proof of theorem 2

\[\limsup \frac{\nabla_n^B(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu). \]
Proof of theorem 2

- \(\limsup \frac{\sqrt{B_n}(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu) \).

- \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

where \(Y_q \) satisfies:

- \(Y_q: \sigma(L_s, s \leq q) \)-measurable.

- \(E[Y_q^2|L_s, s < q] \leq \rho^2 \)

- \(E[|Y_q|^{p'}|L_s, s < q] \leq (2A)^{p'} \)
Proof of theorem 2

• \(\limsup \frac{V_n^B(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu). \)

• \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

where \(Y_q \) satisfies:

• \(Y_q : \sigma(L_s, s \leq q) \)-measurable.

• \(E[Y_q^2|L_s, s < q] \leq \rho^2 \)

• \(E[|Y_q|^{p'}|L_s, s < q] \leq (2A)^{p'} \)

• If \(Y_q' := Y_q - E[Y_q|L_s, s < q] \), then

\[
E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y_q'] = E[L_qY_q']
\]
Proof of theorem 2

- \(\limsup \frac{V_n^{B}(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu) \).
- \(E\left[B\left([L_q - L_{q-1}\mid L_s, s \leq q]\right)\right] = \sup_{Y_q} E\left[(L_q - L_{q-1})Y_q\right] \)
 where \(Y_q \) satisfies:
 - \(Y_q: \sigma(L_s, s \leq q)\)-measurable.
 - \(E[Y_q^2 \mid L_s, s < q] \leq \rho^2 \)
 - \(E[|Y_q|^{p'} \mid L_s, s < q] \leq (2A)^{p'} \)

- If \(Y_q' := Y_q - E[Y_q \mid L_s, s < q] \), then
 \(E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y_q'] = E[L_qY_q'] \)
 - \(Y_q': \sigma(L_s, s \leq q)\)-measurable and \(E[Y_q' \mid L_s, s < q] = 0 \).
Proof of theorem 2

1. \(\lim \sup \frac{\sup_{n} V_{n}(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu) \).

2.
\[
E[B([L_{q} - L_{q-1}|L_{s}, s \leq q])] = \sup_{Y_{q}} E[(L_{q} - L_{q-1})Y_{q}]
\]
where \(Y_{q} \) satisfies:

 a. \(E[Y_{q}^{2}|L_{s}, s < q] \leq \rho^{2} \)

 b. \(E[|Y_{q}|^{p'}|L_{s}, s < q] \leq (2A)^{p'} \)

3. If \(Y'_{q} := Y_{q} - E[Y_{q}|L_{s}, s < q] \), then
\[
E[(L_{q} - L_{q-1})Y_{q}] = E[(L_{q} - L_{q-1})Y'_{q}] = E[L_{q}Y'_{q}]
\]

 a. \(Y'_{q}: \sigma(L_{s}, s \leq q)\)-measurable and \(E[Y'_{q}|L_{s}, s < q] = 0 \).

 b. \(E[Y'^{2}_{q}|L_{s}, s < q] \leq \rho^{2} \)

Proof of theorem 2

• \(\limsup \sup_n \frac{\text{Var}^B_n(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu) \).

• \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

where \(Y_q \) satisfies:

• \(E[|Y_q|^{p'}|L_s, s < q] \leq (2A)^{p'} \)

• If \(Y'_q := Y_q - E[Y_q|L_s, s < q] \), then
 \(E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y'_q] = E[L_qY'_q] \)

• \(Y'_q: \sigma(L_s, s \leq q)\)-measurable and \(E[Y'_q|L_s, s < q] = 0 \).

• \(E[Y'^2_q|L_s, s < q] \leq \rho^2 \)

• \(E[|Y'_q|^{p'}|L_s, s < q] \leq (4A)^{p'} \)
Proof of theorem 2

• \(\lim \sup \frac{\sqrt[n]{V_n^B(\mu)}}{\sqrt{n}} \leq \rho \gamma(\mu) \).

• \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

• If \(Y'_q := Y_q - E[Y_q|L_s, s < q] \), then
 \(E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y'_q] = E[L_qY'_q] \)

 • \(Y'_q: \sigma(L_s, s \leq q)\)-measurable and \(E[Y'_q|L_s, s < q] = 0 \).

 • \(E[Y'^2_q|L_s, s < q] \leq \rho^2 \)

 • \(E[|Y'_q|^{p'}|L_s, s < q] \leq (4A)^{p'} \)

• If \(Z_q \sim \mathcal{N}(0, 1) \perp \perp L_s, s \leq n + 1 \), if \(\mathcal{H}_q := \sigma(L_s, Z_s, s \leq q) \), if \(Y''_q := Y'_q + \sqrt{\rho^2 - E[Y'^2_q|L_s, s < q]}Z_q \)
Proof of theorem 2

• \(\limsup \frac{\sqrt{V_n^B(\mu)}}{\sqrt{n}} \leq \rho \gamma(\mu). \)

• \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

• If \(Y'_q := Y_q - E[Y_q|L_s, s < q] \), then
 \[E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y'_q] = E[L_qY'_q] \]

 • \(Y'_q: \sigma(L_s, s \leq q)\)-measurable and \(E[Y'_q|L_s, s < q] = 0 \).

 • \(E[Y'_q^2|L_s, s < q] \leq \rho^2 \)

 • \(E[|Y'_q|^{p'}|L_s, s < q] \leq (4A)^{p'} \)

• If \(Z_q \sim \mathcal{N}(0, 1) \perp \perp L_s, s \leq n + 1 \), if \(\mathcal{H}_q := \sigma(L_s, Z_s, s \leq q) \),
 if \(Y''_q := Y'_q + \sqrt{\rho^2 - E[Y_q^2|L_s, s < q]}Z_q \) then

 • \(Y''_q \) is \(\mathcal{H}_q \)-measurable and \(E[Y''_q|\mathcal{H}_{q-1}] = 0 \).
Proof of theorem 2

• \(\lim \sup \frac{\sqrt{V_n(B_n(\mu))}}{\sqrt{n}} \leq \rho \gamma(\mu) \).

• \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

• If \(Y'_q := Y_q - E[Y_q|L_s, s < q] \), then
 \(E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y'_q] = E[L_qY'_q] \)
 • \(E[Y'_q^2|L_s, s < q] \leq \rho^2 \)
 • \(E[|Y'_q|^p'|L_s, s < q] \leq (4A)^{p'} \)

• If \(Z_q \sim N(0, 1) \perp L_s, s \leq n + 1 \), if \(\mathcal{H}_q := \sigma(L_s, Z_s, s \leq q) \),
 if \(Y''_q := Y'_q + \sqrt{\rho^2 - E[Y'_q^2|L_s, s < q]}Z_q \) then
 • \(Y''_q \) is \(\mathcal{H}_q \)-measurable and \(E[Y''_q|\mathcal{H}_{q-1}] = 0 \).
 • \(E[Y''_q^2|\mathcal{H}_{q-1}] = \rho^2 \)
Proof of theorem 2

- \(\lim \sup \frac{\sqrt{\nu_n^B(\mu)}}{\sqrt{n}} \leq \rho \gamma(\mu). \)

- \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

- If \(Y_q' := Y_q - E[Y_q|L_s, s < q] \), then
 \(E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y_q'] = E[L_qY_q'] \)
 \(E[|Y_q'|^{p'}|L_s, s < q] \leq (4A)^{p'} \)

- If \(Z_q \sim \mathcal{N}(0, 1) \perp L_s, s \leq n + 1 \), if \(\mathcal{H}_q := \sigma(L_s, Z_s, s \leq q) \), if \(Y_q'' := Y_q' + \sqrt{\rho^2 - E[Y_q'^2|L_s, s < q]}Z_q \) then
 \(Y_q'' \) is \(\mathcal{H}_q \)-measurable and \(E[Y_q''|\mathcal{H}_{q-1}] = 0. \)
 \(E[Y_q''^2|\mathcal{H}_{q-1}] = \rho^2 \)
 \(E[|Y_q''|^{p'}|\mathcal{H}_{q-1}] \leq (4A + C)^{p'} =: K^{p'} \)
Proof of theorem 2

- \(\lim \sup \frac{V_n^B(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu). \)
- \(E\left[B\left([L_q - L_{q-1}|L_s, s \leq q]\right)\right] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)
- If \(Y''_q := Y_q - E[Y_q|L_s, s < q] \), then
 \[E[(L_q - L_{q-1})Y_q] = E[(L_q - L_{q-1})Y'_q] = E[L_qY'_q] \]
- If \(Z_q \sim \mathcal{N}(0,1) \perp L_s, s \leq n + 1 \), if \(\mathcal{H}_q := \sigma(L_s, Z_s, s \leq q) \), if \(Y''_q := Y'_q + \sqrt{\rho^2 - E[Y'^2_q|L_s, s < q]} Z_q \) then
 - \(Y''_q \) is \(\mathcal{H}_q \)-measurable and \(E[Y''_q|\mathcal{H}_{q-1}] = 0. \)
 - \(E[Y''^2_q|\mathcal{H}_{q-1}] = \rho^2 \)
 - \(E[|Y''_q|^p|\mathcal{H}_{q-1}] \leq (4A + C)^p' =: K^p' \)
 \[E[(L_q - L_{q-1})Y_q] = E[L_qY'_q] = E[L_qY''_q] = E[L_{n+1}Y''_q] \]
Proof of theorem 2

- \(\limsup \frac{V_n^B(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu). \)

- \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

- If \(Z_q \sim \mathcal{N}(0, 1) \perp L_s, s \leq n + 1, \) if \(\mathcal{H}_q := \sigma(L_s, Z_s, s \leq q), \) if \(Y''_q := Y'_q + \sqrt{\rho^2 - E[Y_q'^2|L_s, s < q]}Z_q \)

 - \(Y''_q \) is \(\mathcal{H}_q \)-measurable and \(E[Y''_q|\mathcal{H}_{q-1}] = 0. \)

 - \(E[Y''_q^2|\mathcal{H}_{q-1}] = \rho^2 \)

 - \(E[|Y''_q|^{p'}|\mathcal{H}_{q-1}] \leq (4A + C)^{p'} =: K^{p'} \)

\[
E[(L_q - L_{q-1})Y_q] = E[L_q Y'_q] = E[L_q Y''_q] = E[L_{n+1}Y''_q]
\]

- \(\frac{V_n^B(L)}{\sqrt{n}} \leq \sup_{Y''} E[L_{n+1} \frac{\sum_{q=1}^n Y''_q}{\sqrt{n}}] \)
Proof of theorem 2

- \(\limsup \frac{V_n^B(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu). \)

- \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

- If \(Z_q \sim \mathcal{N}(0, 1) \perp L_s, s \leq n + 1, \) \(H_q := \sigma(L_s, Z_s, s \leq q), \)

 \[
 Y''_q := Y'_q + \sqrt{\rho^2 - E[Y'q^2|L_s, s < q]} Z_q
 \]

 - \(Y''_q \) is \(H_q \)-measurable and \(E[Y''_q|H_{q-1}] = 0. \)
 - \(E[Y''_q^2|H_{q-1}] = \rho^2 \)
 - \(E[|Y''_q|^{p'}|H_{q-1}] \leq (4A + C)^{p'} =: K^{p'} \)

 \[
 E[(L_q - L_{q-1})Y_q] = E[L_q Y'_q] = E[L_q Y''_q] = E[L_{n+1} Y''_q]
 \]

- \(\frac{V_n^B(L)}{\sqrt{n}} \leq \sup_{Y''} E[L_{n+1} \frac{\sum_{q=1}^n Y''_q}{\sqrt{n}}] \overset{CLT}{\approx} E[L_{n+1} Z \rho] \)

 where \(Z \sim \mathcal{N}(0, 1) \)
Proof of theorem 2

• \(\lim \sup \frac{V_n^B(\mu)}{\sqrt{n}} \leq \rho \gamma(\mu) \).

• \(E[B([L_q - L_{q-1}|L_s, s \leq q])] = \sup_{Y_q} E[(L_q - L_{q-1})Y_q] \)

• If \(Z_q \sim N(0, 1) \perp L_s, s \leq q \), if \(\mathcal{H}_q := \sigma(L_s, Z_s, s \leq q) \), if \(Y''_q := Y'_q + \sqrt{\rho^2 - E[Y'^2_q|L_s, s < q]} Z_q \) then

 • \(Y''_q \) is \(\mathcal{H}_q \)-measurable and \(E[Y''_q|\mathcal{H}_{q-1}] = 0 \).

 • \(E[Y''^2_q|\mathcal{H}_{q-1}] = \rho^2 \)

 • \(E[\|Y''\|^p|\mathcal{H}_{q-1}] \leq (4A + C)^p' =: K^{p'} \)

\[E[(L_q - L_{q-1})Y_q] = E[L_q Y'_q] = E[L_q Y''_q] = E[L_{n+1} Y''_q] \]

• \(\frac{V_n^B(L)}{\sqrt{n}} \leq \sup_{Y''} E[L_{n+1} \frac{\sum_{q=1}^{n} Y''_q}{\sqrt{n}}]^\text{CLT} E[L_{n+1} Z \rho] \leq \rho \gamma(\mu) \)

where \(Z \sim N(0, 1) \) and \(L_{n+1} \sim \mu \).
Skorohod embedding and CLT

Let B be a BM and \mathcal{F} its natural filtration. If $S_q := \sum_{k=1}^{q} \frac{Y_k''}{\rho \sqrt{n}}$

\exists an increasing sequence τ_q of \mathcal{F}-stopping times.

\exists an \mathcal{F}_∞-measurable r.v. \tilde{L}_{n+1}

s. th. $[(S_1, \ldots, S_n, L_{n+1})] = [(B_{\tau_1}, \ldots, B_{\tau_n}, \tilde{L}_{n+1})]$.

Price dynamics on a stock market with asymmetric information – p. 29/29
Skorohod embedding and CLT

• Let B be a BM and \mathcal{F} its natural filtration.

 If $S_q := \sum_{k=1}^{q} Y_k \frac{\rho}{\sqrt{n}}$

 \exists an increasing sequence τ_q of \mathcal{F}-stopping times.

 \exists an \mathcal{F}_∞-measurable r.v. \tilde{L}_{n+1}

 s. th. $[(S_1, \ldots, S_n, L_{n+1})] = [(B_{\tau_1}, \ldots, B_{\tau_n}, \tilde{L}_{n+1})]$.

• $E[\tau_n] = E[B_{\tau_n}^2] = E[S_n^2] = 1$
Skorohod embedding and CLT

- Let B be a BM and \mathcal{F} its natural filtration.

 If $S_q := \sum_{k=1}^{q} \frac{Y_k''}{\rho \sqrt{n}}$

 \exists an increasing sequence τ_q of \mathcal{F}-stopping times.

 \exists an \mathcal{F}_∞-measurable r.v. \tilde{L}_{n+1}

 s. th. $[(S_1, \ldots, S_n, L_{n+1})] = [(B_{\tau_1}, \ldots, B_{\tau_n}, \tilde{L}_{n+1})]$.

- $E[\tau_n] = E[B_{\tau_n}^2] = E[S_n^2] = 1$

- $\theta_q := \tau_q - q/n$ is an \mathcal{F}_{τ_q}-martingale:

 $E[\tau_q - \tau_{q-1}|\mathcal{F}_{\tau_{q-1}}] = E[(B_{\tau_q} - B_{\tau_{q-1}})^2|\mathcal{F}_{\tau_{q-1}}] = E[(Y_q''/\rho \sqrt{n})^2|S_t, t < q] = 1/n$
Skorohod embedding and CLT

- Let B be a BM and \mathcal{F} its natural filtration.

 If $S_q := \frac{\sum_{k=1}^{q} Y_k''}{\rho \sqrt{n}}$

 \exists an increasing sequence τ_q of \mathcal{F}-stopping times.

 \exists an \mathcal{F}_∞-measurable r.v. \tilde{L}_{n+1}

 s. th. $[(S_1, \ldots, S_n, L_{n+1})] = [(B_{\tau_1}, \ldots, B_{\tau_n}, \tilde{L}_{n+1})]$.

- $E[\tau_n] = E[B_{\tau_n}^2] = E[S_n^2] = 1$

- $\theta_q := \tau_q - q/n$ is an \mathcal{F}_{τ_q}-martingale:

- $p < 2 \Rightarrow p' > 2$. Here $p' = 4$
Skorohod embedding and CLT

- Let B be a BM and \mathcal{F} its natural filtration. If $S_q := \sum_{k=1}^q \frac{Y_k''}{\rho \sqrt{n}}$
 - \exists an increasing sequence τ_q of \mathcal{F}-stopping times.
 - \exists an \mathcal{F}_∞-measurable r.v. \tilde{L}_{n+1}
 - s. th. $[(S_1, \ldots, S_n, L_{n+1})] = [(B_{\tau_1}, \ldots, B_{\tau_n}, \tilde{L}_{n+1})]$.

- $E[\tau_n] = E[B_{\tau_n}^2] = E[S_n^2] = 1$

- $\theta_q := \tau_q - q/n$ is an \mathcal{F}_{τ_q}-martingale:

- $p < 2 \Rightarrow p' > 2$. Here $p' = 4$
 - $E[(\theta_q - \theta_{q-1})^2] \leq E[(\tau_q - \tau_{q-1})^2] \leq E[(Y_q''/\rho \sqrt{n})^4] \leq \tilde{K}/n^2$
 - $C_4 E[(B_{\tau_q} - B_{\tau_{q-1}})^4] = C_4 E[(Y_q''/\rho \sqrt{n})^4] \leq \tilde{K}/n^2$
Skorohod embedding and CLT

- Let B be a BM and \mathcal{F} its natural filtration. If $S_q := \sum_{k=1}^{q} Y''_k / \rho \sqrt{n}$

\exists an increasing sequence τ_q of \mathcal{F}-stopping times.

\exists an \mathcal{F}_∞-measurable r.v. \tilde{L}_{n+1}

s. th. $[(S_1, \ldots, S_n, L_{n+1})] = [(B_{\tau_1}, \ldots, B_{\tau_n}, \tilde{L}_{n+1})]$.

- $E[\tau_n] = E[B_{\tau_n}^2] = E[S_n^2] = 1$

- $\theta_q := \tau_q - q/n$ is an \mathcal{F}_{τ_q}-martingale:

- $p < 2 \Rightarrow p' > 2$. Here $p' = 4$

$E[(\theta_q - \theta_{q-1})^2] \leq E[(\tau_q - \tau_{q-1})^2] \leq C_4 E[(B_{\tau_q} - B_{\tau_{q-1}})^4] = C_4 E[(Y''_q / \rho \sqrt{n})^4] \leq \tilde{K}/n^2$

- $\text{var}(\tau_n) = \text{var}(\theta_n) \leq \tilde{K}/n$
Skorohod embedding and CLT

- Let B be a BM and \mathcal{F} its natural filtration.

 If $S_q := \frac{\sum_{k=1}^{q} Y_k}{\rho \sqrt{n}}$

 \exists an increasing sequence τ_q of \mathcal{F}-stopping times.

 \exists an \mathcal{F}_∞-measurable r.v. \tilde{L}_{n+1}

 s. th. $[\langle S_1, \ldots, S_n, L_{n+1} \rangle] = [\langle B_{\tau_1}, \ldots, B_{\tau_n}, \tilde{L}_{n+1} \rangle]$.

- $E[\tau_n] = E[B_{\tau_n}^2] = E[S_n^2] = 1$

- $\theta_q := \tau_q - q/n$ is an \mathcal{F}_{τ_q}-martingale:

- $p < 2 \Rightarrow p' > 2$. Here $p' = 4$

- $\text{var}(\tau_n) = \text{var}(\theta_n) \leq \tilde{K}/n$

- $E[(B_{\tau_n} - B_1)^2] = \|\tau_n - 1\|_{L^1} \leq \sqrt{\text{var}(\tau_n)} \leq \sqrt{\tilde{K}/n}$