Multidimensional screening in a monopolistic insurance market

Pau Olivella and Fred Schroyen

Center for Operations Research and Econometrics
Voie du Roman Pays, 34
B-1348 Louvain-la-Neuve
Belgium
http://www.uclouvain.be/core
Multidimensional screening
in a monopolistic insurance market

Pau OLIVELLA 1 and Fred SCHROYEN 2

November 2011

Abstract

In this paper, we consider a population of individuals who differ in two dimensions: their risk type (expected loss) and their risk aversion. We solve for the profit maximizing menu of contracts that a monopolistic insurer puts out on the market. First, we find that it is never optimal to fully separate all the types. Second, if heterogeneity in risk aversion is sufficiently high, then some high-risk individuals (the risk-tolerant ones) will obtain lower coverage than some low-risk individuals (the risk-averse ones). Third, we show that when the average man and woman differ only in risk aversion, gender discrimination may lead to a Pareto improvement.

Keywords: insurance markets, asymmetric information, screening, gender discrimination, positive correlation test.

JEL Classification: D82, G22

1 Departament d'Economia i d'Historia Economica and CODE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain. E-mail: pau.olivella@uab.es
2 Department of Economics, NHH Norwegian School of Economics and Health Economics Bergen (HEB), N-5045 Bergen, Norway. E-mail: fred.schroyen@nhh.no

The paper has benefited from presentations at the 6th European Health Economics Workshop (Liège, 2005), the Public Economic Theory Meeting (Marseille, 2005), the IHEA World Congress (Barcelona, 2005) the 33rd EGRIE meeting (Barcelona, 2006), the HEB-HERO Health Economics Workshop (Oslo, 2009) and from seminar presentations at CORE (Louvain-la-Neuve, 2007), HECER (Helsinki, 2008), Boston University (2009) and Toulouse School of Economics (2011). We are grateful to Catarina Goulao, Jean Hindriks, Eirik Kristiansen, Eric Naevdal and Gaute Torsvik for discussions and comments. Olivella acknowledges support from the Government of Catalonia project 2005SGR00836 and the Barcelona GSE Research Network, as well as from the Ministerio de Educación y Ciencia, project ECO2009-07616 and CONSOLIDER- INGENIO 2010 (CSD2006-0016). Schroyen acknowledges the hospitality of CODE (Universitat Autònoma de Barcelona) where this project was started, and CORE (Université catholique de Louvain) where this version was completed, and financial support from Health Economic Bergen through an SNF grant.

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors.
1 Introduction

Individuals who seek insurance differ from each other in many respects. At least two of these differences are of central importance for insurance companies and for insurance market outcomes: the distribution of losses that insurance takers face, and their willingness to bear the risk of those losses. Empirically, heterogeneity in the second characteristic is not negligible. Aarbu and Schroyen (2011), for example, find that the degree of relative risk aversion among Norwegians averages above four with a standard deviation of about three.

Insurance market theory has primarily focussed on the consequences of private information on the loss distribution, and to a lesser extent on the case in which information on risk aversion is private, but has rarely studied situations in which private information applies to both characteristics. Moreover, analysis of the two-dimensional private-information problem has been restricted to competitive markets; i.e., a setting in which several insurers compete for clients. In this paper, we study the opposite setting by asking how a monopolist would design a contract menu intended to attract agents who hold not only private information on their loss distribution, but also on their risk preferences.

Adding risk aversion heterogeneity to the analysis of insurance markets calls for a multidimensional hidden information model. Such an analysis is technically not straightforward, because the existence of private information in two or more dimensions implies that the ordering of agents according to their willingness to pay for extra coverage becomes endogenous. In other words, the ordering depends on the contract. To see this, consider two contracts: one with very partial coverage and one with almost full coverage. When offered the former contract, a highly risk-averse agent facing a low risk may be more willing to pay for additional coverage than a risk-tolerant agent facing a high risk, while the situation could be the other way around for the latter contract. Technically, the indifference curves of these “intermediate”

1 A third factor, that will not be discussed here, is the moral stance of insurees, determining the amount of false claims that insurers have to deal with each year.

2 Rothschild and Stiglitz (1976) analyse a perfectly competitive insurance market with private information on the distribution of losses. Stiglitz (1977, Sections 3 and 4), and Landsberger and Meilijson (1996) analyse a monopolist insurer. Stiglitz (1977, Section 5) and Landsberger and Meilijson (1994) analyse the outcomes under monopoly when private information is held on risk attitude.
insurance takers cross twice, and this invalidates standard solution methods.3

There is a scant literature on solutions to multidimensional screening problems. One branch of this literature is methodological and deals with a principal–agent setting, as we do—see, e.g., the “user’s guide” by Armstrong and Rochet (1999). It turns out, however, that our insurance problem does not lend itself to being solved by the techniques proposed therein, the main reason being that our problem has two hidden characteristics, but only one instrument—the degree of coverage.4 A second branch of literature deals with multidimensional screening in insurance markets, but restricts itself to competitive markets. In this literature, it is usually assumed that each insurance company offers a single contract.5 In a monopolistic setting such as ours, such a restriction would render the analysis trivial and unrealistic. By assuming that the monopolist offers a menu of contracts, the relative proportion of the non-intermediate types play a role that is as crucial as the non-single crossing of intermediate types’ indifference curves. Hence, the problem of the failure of the single crossing condition—brought about by the intermediate types—is compounded in the monopolistic setting by the necessity of dealing with non-intermediate types in the design of the optimal menu of contracts.

Our main objective is to characterize this optimal menu. We establish

3Jullien et al. (2007) analyse whether the single crossing property holds in the general monopolistic screening model with moral hazard and in which agents differ in their risk preferences. For more information on the role of this property in a competitive insurance market with the same informational assumptions and moral hazard, see De Donder and Hindriks (2009).

4Armstrong and Rochet (1999) study a problem in which the agent has quasilinear and separable preferences on two action levels and a transfer. The principal has similar preferences but she is unsure whether the agent has a high or low valuation for either of the two activities. A contract specifies a transfer and two activity levels. In our problem, there is only one “activity”, i.e., insurance coverage. An agent’s willingness to pay for coverage depends on both her risk level and risk aversion. On the other hand, the insurer’s willingness to offer coverage depends on the level of risk, but not on the agent’s risk aversion. Risk aversion only indirectly determines contract profitability through the rents that must be left for incentive compatibility reasons. To sum up, we have a screening problem with two hidden characteristics, one of which is a common value, and with one instrument. This also makes our problem different from those of Armstrong (1999) (who incorporates one instrument and two common value characteristics) and Dana (1993) (two instruments, two common value characteristics).

5This \emph{de facto} means that the main results are driven by the lack of order between what we refer to as “intermediate types”; namely, by those whose indifference curves cross twice. This explains why some authors only consider these intermediate types—see, e.g., Wambach (2000). Although Smart (2000) and Villeneuve (2003) consider the full set of types, they maintain the assumption that each company offers a single contract.
three results: (i) it is always optimal to pool some of the types (i.e., full separation of types is never optimal); (ii) unlike in the one-dimensional case, exclusion of some high-risk individuals from insurance may be optimal; and (iii) some low-risk individuals may end up with more coverage than some high-risk individuals.

Next, we address two issues that have received much recent attention. The first one is methodological. In testing for the presence of asymmetric information in insurance markets, the question is whether the absence of significant positive correlation between risk and coverage (i.e., the absence of adverse selection) should be taken as indicative of the absence of asymmetric information. Chiappori et al. (2006) derive the testable prediction that in a sufficiently competitive insurance market with asymmetric information, the observable risk should be related to coverage in a positively monotonic way. Notice that this is stronger than requiring a positive correlation between coverage and risk. We show when this result goes through in our monopolistic setting, and when it does not. In the latter case, we also show when risk and coverage can be statistically positively correlated, and when they cannot. In this sense, our results corroborate the role of the sufficient competition assumption for the Chiappori et al. (2006) result. Our analysis also adds to the list of possible explanations for the lack of evidence supporting the existence of asymmetric information the combination of market power and preference heterogeneity. Other explanations in the (growing) list are: (i) endogenous heterogeneity in risks because of moral hazard (see, e.g., Cutler et al., 2008); (ii) endogenous wealth heterogeneity (Netzer and Scheuer, 2007); and (iii) the insurer having privileged information on risks (Villeneuve, 2000).

The second issue concerns the possible welfare consequences of the ban on the use of gender discrimination in insurance that will take effect from December 2012 in the European Union. This ban extends the principle of equal treatment of women and men in the access to and the supply of goods and services to the insurance industry. This will surely affect the insurance

6Chiappori et al. (2006) propose a local argument for a negative correlation between risk and coverage to arise in the case of monopoly. Our analysis provides instead a full characterization.

8The gender directive of 2004 did provide for a derogation that allowed member states to permit gender-specific differences in insurance premiums and benefits in so far as gender is a determining risk factor that can be substantiated by relevant and accurate actuarial and statistical data. In March 2011, however, the European Court of Justice declared
sector, because of the common practice of differentiating premia according to gender when underwriting life, health and car accident risks. Regarding life insurance, it has been argued that if one controls for lifestyle, environmental factors, and social class, “the difference in average life expectancy between men and women lies between zero and two years” and therefore that “the practice of insurers to use sex as a determining factor in the evaluation of risk is based on ease of use rather than on real value as a guide to life expectancy.” (Commission of the European Communities, 2003: 6) Not surprisingly, European insurer carriers have reacted fiercely to the proposed ban, arguing that removing gender would weaken their ability to assess risk and that gender-neutral calculation would increase the premia for many of their products, especially for women (Financial Times, November 3, 2003, p. 2). We show that even if—as the Commission claims—gender does not provide any information on the underlying risk, if it does provide (imperfect) information on an individual’s risk aversion (as empirical research suggests), then allowing the monopolist to condition the terms of the insurance contract on gender may be Pareto improving. We provide sufficient conditions for such an improvement to arise.

From a technical point of view, we have taken a new approach to the analysis of screening insurance takers that simplifies the problem and is appealing from a modelling point of view. Rather than following the standard set-up in which the individual faces the possibility of a single monetary loss, we assume that the loss is normally distributed and that agents differ in their expected losses, which can be high or low. If the insurance indemnity is linear in the loss, as is the case under a reimbursement insurance scheme with a constant co-insurance rate, the final income will also be normally distributed. Endowing agents with a utility function that displays constant absolute risk aversion, which also can be high or low, means that their preferences over uncertain income prospects can be represented as mean–variance preferences. An important consequence of this approach is that preferences over insurance contracts become quasilinear in the insurance premium and therefore in the information rent. Readers familiar with contract theory will acknowledge the usefulness of linearity in the information rent in specifying the incentive compatibility constraints. An additional advantage of mean–variance pref-
The limitations of our approach follow immediately from these assumptions. We do not consider insurance contracts with either a deductible or a cap because such features would destroy the normality of net income. Second, the normality assumption implies a positive likelihood of negative losses, although this problem may be rendered of secondary importance by considering sufficiently high means and/or low variances for the losses. Perhaps the most important objection is that we have no skewness in the loss distribution, and in particular no strictly positive probability mass for a zero loss. Nevertheless, these are minor limitations when compared with the considerable advantages the approach offers for characterizing the solution to a two-dimensional screening problem. To economize on space, our general characterization is restricted to a non-positive correlation between risk size and risk aversion.

The remainder of the paper is organized as follows. In Section 2, we model the preferences of insurance takers and specify reimbursement contracts. In Section 3, we set up the problem faced by a monopolistic insurer. In Section 4, we characterize the optimal menu of contracts when insurees only differ in risk levels or risk aversion, as well as considering the case of perfect positive correlation. In Section 5, we assume that insurees differ in both respects simultaneously and discuss the five regimes (for contract menus) that may be optimal. For each regime, we characterize the optimal set of co-insurance rates. In Section 6, we determine which regime is dominating for which part of the parameter space. In Section 7, we interpret the testable prediction of Chiappori et al. (2006) in the light of our results. In Section 8, we trace out the consequences of allowing the monopolistic insurer to gender discriminate. Section 9 concludes the paper.

Except when otherwise stated, we have relegated all proofs of lemmas, theorems and propositions to our companion paper (Olivella and Schroyen, 2011).

2 Insurance takers and reimbursement contracts

Insurance takers

We assume that individuals are endowed with initial wealth e and a nega-
tive exponential von Neumann–Morgenstern utility function defined on final wealth y: $u(y) = -\exp(-ry)$, where $r > 0$ is the (constant) degree of absolute risk aversion. Initial wealth is subject to a random loss z that follows a normal distribution with mean μ and variance σ^2.

Agents have access to reimbursement insurance. A typical reimbursement contract pays out a compensation of $1 - c$ per Euro loss, in return for a premium P. Ex post, final wealth is then given by

$$y = e - P - cz,$$

which ex ante is also normally distributed. We will express a contract C as a pair of a co-insurance rate c and a premium P: $C = (c, P)$.

It is well known that under the assumptions made, the expected utility of the agent is representable by the certainty equivalent (CE) wealth function $U = E(y) - \frac{r}{2} \text{var}(y)$. By replacing the mean and variance of final wealth, CE wealth is given by

$$U = e - P - cp - \frac{r}{2} c^2 \sigma^2.$$

From now on, we write $\nu \overset{\text{def}}{=} r\sigma^2$, and assume that this product can be either high or low, and likewise for the expected loss: $\mu \in \{\mu_L, \mu_H\}$ and $\nu \in \{\nu_L, \nu_H\}$, where $\mu_L < \mu_H$ and $\nu_L < \nu_H$. The model can thus be interpreted in two ways: either individuals are equally risk averse but their losses have different variances, or the loss variance is identical but individuals have different degrees of risk aversion. Throughout, we adhere to the second interpretation and will refer to ν as risk aversion.

A person with characteristics (μ_i, ν_j) is said to be of type ij. The share of ij individuals in the population is given by $\alpha_{ij} (i, j = H, L, \sum_{i,j} \alpha_{ij} = 1)$. We denote by α_k, the fraction of individuals with expected loss μ_k ($\alpha_k = \alpha_{kL} + \alpha_{kH}$); likewise, α_k is the fraction of individuals with risk aversion ν_k ($\alpha_k = \alpha_{Lk} + \alpha_{Hk}$).

Incentive compatible contracts

When a person of type ij $(i, j \in \{H, L\})$ signs the contract $C = (c, P)$, her CE wealth, is

$$U^{ij}(c, P) \overset{\text{def}}{=} e - P - c\mu_i - \frac{1}{2} c^2 \nu_j.$$

If instead she decides to remain uninsured, her CE wealth becomes $e - \mu_i - \frac{1}{2} \nu_j$, which is of course equivalent to accepting the contract $(c, P) = (1, 0)$, under
which the agent bears the full loss but pays no premium. The CE rent that
the agent enjoys from contract \((c, P)\) is then

\[
R_{ij}(c, P) \equiv U_{ij}(c, P) - U_{ij}(1, 0) = -P + (1 - c)\mu_i + \frac{1}{2}[1 - c^2]\nu_j, \tag{4}
\]

Hence, the rent decreases with the co-insurance rate both via the expected
loss and via risk aversion (if \(c > 0\)).

The marginal willingness to pay for a slightly lower co-insurance rate \(c\) is

\[
MW P_{ij}^c(c) \equiv -\frac{dP}{dc}\bigg|_{U_{ij}=0} = \mu_i + c\nu_j, \tag{5}
\]

which increases linearly in \(c\).

Indifference curves in the contract space \((c, P)\) are thus concave in \(c\),
and downward sloping for non-negative co-insurance rates. In addition,
individuals with higher expected losses and/or greater risk aversion have a
higher marginal willingness to pay. Figure 1 illustrates the indifference curve
that passes through the no-insurance point \(N = (1, 0)\). Given that the slope
of the indifference curve when it passes the \(P\)-axis is \(\mu\), it is easy to decompose
the total willingness to pay for full insurance into the expected loss and the
risk premium \(\nu/2\).

– Figure 1 here –

When agent \(ij\) signs a contract intended for agent \(kl\), the rent that the
former receives is given by

\[
R_{ij}(c_{kl}, P_{kl}) = -P_{kl} + (1 - c_{kl})\mu_i + \frac{1}{2}(1 - c_{kl}^2)\nu_j, \tag{6}
\]

It is useful to define the following function:

\[
\delta(c_{kl}, \mu_i - \mu_k, \nu_j - \nu_l) \equiv (1 - c_{kl})(\mu_i - \mu_k) + \frac{1}{2}(1 - c_{kl}^2)(\nu_j - \nu_l). \tag{7}
\]

Suppose now that type \(kl\) is truthful and receives rent \(R_{kl}(c_{kl}, P_{kl})\). Which
rent does \(ij\) obtain when choosing the contract for \(kl\)? Using (4) and (7),
the answer is given by

\[
R_{ij}(c_{kl}, P_{kl}) \equiv R_{kl}(c_{kl}, P_{kl}) + \delta(c_{kl}, \mu_i - \mu_k, \nu_j - \nu_l). \tag{8}
\]

Thus, by pretending to be type \(kl\), type \(ij\) can obtain type \(kl\)'s rent plus \(\delta\).
To see the usefulness of contract distortion, let us fix the rent that a truthful type \(kl \) receives under the contract \((c_{kl}, P_{kl})\). A marginal increase in the co-insurance rate for \(kl \), \(dc_{kl} > 0 \), would have to be compensated by a marginal decrease in the premium \(P_{kl} \). This has the following effect on the rent for the mimicker \(ij \):

\[
\frac{\partial R_{ij}(c_{kl}, P_{kl})}{\partial c_{kl}} \bigg|_{dR_{kl}=0} = \frac{\partial}{\partial c_{kl}} \delta(c_{kl}, \mu_i - \mu_k, \nu_j - \nu_l) = - (\mu_i - \mu_k) - c_{kl}(\nu_j - \nu_l).
\]

Thus, the rent for \(ij \) goes down to the extent that: (i) \(ij \) is mimicking a type with a lower risk; and (ii) \(ij \) is mimicking a type with lower risk aversion. The intuition is the following. When raising the co-payment of a low risk (or risk-tolerant) individual, the decrease in the premium needed to compensate him is not too large, because of the small likelihood of needing that co-payment (or because of the low valuation of the increase in the variance of final wealth). However, a person with a higher risk level or greater risk aversion who is tempted by this contract will dislike this change. This explains why increasing a co-insurance rate for some types will lower the rents of all those mimicking (and the mimickers of these mimickers) who have a higher risk, and will increase the rent of all those mimicking (and the mimickers of these mimickers) who have lower risk aversion.

From now on, we simply write \(R_{ij} \) for \(R_{ij}(c_{ij}, P_{ij}) \) \((i, j = L, H)\). Self-selection between contracts \((c_{ij}, P_{ij})\) and \((c_{kl}, P_{kl})\) then requires that

\[
R_{ij} \geq R_{kl} + \delta(c_{kl}, \mu_i - \mu_k, \nu_j - \nu_l),
\]

\[
R_{kl} \geq R_{ij} + \delta(c_{ij}, \mu_k - \mu_i, \nu_l - \nu_j),
\]

which, taken together, imply \(0 \geq \delta(c_{kl}, \mu_i - \mu_k, \nu_j - \nu_l) + \delta(c_{ij}, \mu_k - \mu_i, \nu_l - \nu_j) \), or, using (7),

\[
\int_{c_{kl}}^{c_{ij}} [(\mu_i - \mu_k) + c(\nu_j - \nu_l)] dc \leq 0.
\]

A necessary condition for incentive compatibility between contracts \(Hj \) and \(Lj \) \((j = H, L)\) is that

\[
\int_{c_{Lj}}^{c_{Hj}} \Delta \mu dc \leq 0 \iff c_{Hj} \leq c_{Lj}, \tag{9}
\]

with \(\Delta \mu \overset{\text{def}}{=} \mu_H - \mu_L > 0 \). Similarly, incentive compatibility between contracts \(iH \) and \(iL \) \((i = H, L)\) requires that

\[
\int_{c_{iL}}^{c_{iH}} c \Delta \nu dc \leq 0 \iff c_{iH} \leq c_{iL}, \tag{10}
\]
with $\Delta \nu \overset{\text{def}}{=} \nu_H - \nu_L$ and where it is assumed that $c \geq 0$ (on which more below).

The double dimensionality leads in general to double crossing of the indifference curves of types HL and LH. Solving $MW P^{HL}(c) = MW P^{LH}(c)$ for c yields $c = \frac{\Delta \mu}{\Delta \nu}$. That is, in the (c, P) space, the locus of tangency points between HL’s and LH’s indifference curves is a vertical line at $\frac{\Delta \mu}{\Delta \nu}$. For lower co-insurance rates, HL’s indifference curve crosses that of LH downwards from above, while for higher rates, this happens from below. The quadratic expressions for CE wealth ensure that if a crossing occurs at a rate c^{-} to the left of $\frac{\Delta \mu}{\Delta \nu}$, then the second crossing occurs at c^{+}, at the same distance to the right of $\frac{\Delta \mu}{\Delta \nu}$—see Figure 2. Hence, if we say that the indifference curves of HL and LH form a lens, then $\frac{c^{+} - c^{-}}{2} = \frac{\Delta \mu}{\Delta \nu}$ is the position of this lens, while $\ell \overset{\text{def}}{=} c^{+} - c^{-}$ is its size.\(^9\)

Next, we introduce two crucial variables for characterizing the profit maximizing set of contracts, as follows:

$$D \overset{\text{def}}{=} \frac{\Delta \mu}{\nu_L} \in (0, \infty) \quad \text{and} \quad x \overset{\text{def}}{=} \frac{\nu_L}{\nu_H} \in (0, 1].$$

The ratio D measures, in a unit-free fashion, the difference in risk between two types.\(^{10}\) The ratio x measures the degree of similarity along the risk-aversion dimension. Using this notation, the locus of tangency points is therefore located at $D^{-\frac{1}{2}}x$, so that for sufficiently small x, the tangency of the intermediate types’ indifference occurs at a co-insurance rate below unity. This makes it possible that both crossings become relevant for the analysis.

\(^9\)The right- (left-) crossing co-insurance rate is given by $c^{+}(c^{-}) = \frac{\Delta \mu}{\Delta \nu} + (-)\sqrt{\left(\frac{\Delta \mu}{\Delta \nu}\right)^2 + \frac{2U^{HL} - U^{LH}}{\Delta \nu}}$, where $U^{HL}(U^{LH})$ is the CE wealth for $HL(LH)$. Hence, the size of the lens, defined as $c^{+} - c^{-}$, is $\ell = 2\sqrt{\left(\frac{\Delta \mu}{\Delta \nu}\right)^2 + \frac{2U^{HL} - U^{LH}}{\Delta \nu}}$, a dimensionless number.

\(^{10}\)Because the coefficient of absolute risk aversion (r) measures twice the risk premium per unit of variance, we can conclude that the risk premium of a low-risk-averse type (RP_L, say) equals $\frac{1}{2}\nu_L$. Therefore, $D = \frac{\Delta \mu}{2RP_L} = \frac{1}{2} \frac{\Delta \mu}{\mu_L / \mu_H}$. 9
3 The insurance company

We consider a single, risk-neutral insurer with monopoly power on the market for reimbursement contracts. Her expected profits when an agent of type ij has accepted a reimbursement contract (c, P) is given by

$$\pi^{ij}(c, P) = P - \beta \mu_i = P - (1 - c)\mu_i.$$

(11)

Therefore, the iso-profit associated with type ij has slope $-\mu_i$ in the contract space (c, P).

With full information, the monopolist will provide ij with full insurance ($c_{ij} = 0$) at a premium that sets her rent equal to zero. Hence, using (4), $P_{ij} = \mu_i + \frac{1}{2} \nu_j$. This yields a per capita payoff equal to $\pi = \frac{1}{2} \nu_j$. The tangency line in Figure 1 thus corresponds to the highest feasible iso-profit line, and the profit that the insurer makes can be read off from the dashed vertical axis on the right-hand side. Under full information, the insurer can extract the entire risk premium $\nu/2$. In what follows, we will characterize the optimal co-insurance rates and the optimal rents. The corresponding premia can then be found with the help of (4).

Given (11), the insurer’s total profit is equal to $\sum_{i,j} \alpha_{ij} \pi^{ij}(c_{ij}, P_{ij})$. From (4) and (11)—both evaluated at (c_{ij}, P_{ij})—and recalling that we can write R_{ij} for $R_{ij}(c_{ij}, P_{ij})$ (i.e., type ij’s rent when truthful), we can express the insurer’s total profit as

$$\sum_{i,j} \alpha_{ij} \left[\frac{1}{2} [1 - c_{ij}^2] \nu_j - R_{ij} \right].$$

(12)

This objective function is to be maximized with respect to (c_{ij}, R_{ij}) $(ij = H, L)$, subject to the usual voluntary participation and incentive compatibility constraints.

As in most of the literature, to these constraints we add two additional sets of constraints that are needed to avoid false claims (see, e.g., Picard, 2000). If a co-insurance rate is negative, the insurer refunds more than 100% of the losses, and the insuree will obviously have a strong incentive to overstate the size of the loss. On the other hand, if a co-insurance rate exceeds unity, the agent will have to be paid to accept such a contract (i.e., a negative premium). Once the agent has accepted the insurance, he would have to pay the insurer as well as bearing the loss once it occurs. It is clear that he would have strong incentives to understate the size of the loss (or
even hide the loss altogether). Hence, we constrain co-insurance rates to lie in the interval \([0, 1]\).

The monopolist thus solves the following problem:

\[
\max_{(c_{ij}, R_{ij})} \sum_{i,j} \alpha_{ij} \left[\frac{1}{2} [1 - c_{ij}^2] \nu_j - R_{ij} \right], \text{ s.t.} \tag{13}
\]

\[
R_{ij} \geq 0 \quad (i, j = H, L) \tag{14}
\]

\[
R_{ij} \geq R_{kl} + \delta(c_{kl}, \mu_i - \mu_k, \nu_j - \nu_l) \quad (i, j, k, l = H, L) \tag{15}
\]

\[
0 \leq c_{ij} \leq 1 \quad (i, j = H, L) \tag{16}
\]

The first set of constraints ensures voluntary participation, while the second ensures that all types self-select. The third set comprises the (reduced form) \textit{ex ante} and \textit{ex post} moral hazard constraints.

The following theorem provides the usual result of no-distortion-at-the-top (full insurance for the \(HH\) type) and no-rents-at-the-bottom. Except when otherwise stated, all proofs are relegated to our companion paper (Olivella and Schroyen, 2011).

Theorem 1 At the optimum solution, (i) \(c_{HH} = 0\) and (ii) \(R_{LL} = 0\).

Before characterizing the rest of the solution to the two-dimensional screening problem, it is useful to first consider the one-dimensional case.

4 One-dimensional screening

There are three instances in which screening becomes unidimensional. In the first instance, all agents have the same risk aversion; i.e., \(\nu_H = \nu_L = \nu\). This is the standard monopoly problem with just two types when insurees either bear a low or a high expected loss. The type distribution can be described by a single parameter \(\alpha_H\), the proportion of high risks in the population. We have the following theorem.

Theorem 2 When all agents have the same risk aversion, the optimal menu has \(c_H = 0\) and \(c_L = \min\{D \frac{\alpha_H}{1 - \alpha_H}, 1\}\).

The full insurance contract giving \(L\) zero rent would be selected by \(H\) as well. At a zero co-insurance rate, the slope of \(H\)'s indifference curve is steeper than that of \(L\). If the insurer increases \(c_L\) above zero, this will
create a second-order reduction in profit from L, but a first-order gain in profit from H because the latter can be charged a strictly higher premium (for full insurance). Hence, it pays to start distorting L’s contract. The optimal co-insurance rate balances the gain in profit from H \((\alpha_H \Delta \mu)\) with the loss in profits from L \(((1 - \alpha_H) \nu)\). Notice that it may pay to exclude type L whenever \(\alpha_H \geq 1/(1 + D)\); i.e., whenever the proportion of low loss agents is sufficiently small—as expected.

The second instance in which the screening problem becomes unidimensional is when individuals differ in risk aversion only. Let \(\alpha_H\) instead be the proportion of highly risk-averse types; i.e., those with \(\nu = \nu_H (> \nu_L)\). We have the following theorem.

Theorem 3 When all agents face the same expected loss, the optimal menu has \(c_H = 0\), and \(c_L = \{0\text{ if } x > \alpha_H, 1\text{ otherwise.}\)

This result is less standard. With only differences in risk aversion, the optimal solution is always at the corner. Either the low type is excluded or he receives full insurance. The reason for this “bang-bang” solution is that, unlike in the different risk scenario, at a zero co-insurance rate, both H’s and L’s indifference curves are tangential to one another. Hence, distorting L’s contract by raising the co-insurance rate now results in a second-order gain in profit from H, and it is the second-order condition that determines whether \(c_L = 0\) is a local maximum or minimum.

The final instance of unidimensional screening arises when risk levels and risk aversion are perfectly positively correlated. As it transpires from (5), we have \(MW P^{HH}(c) > MW P^{LL}(c)\) for any \(c\). The two types are therefore once again unambiguously ordered.

Theorem 4 When the two characteristics are perfectly positively correlated, the optimal menu has \(c_{HH} = 0\) and \(c_{LL} = \{\min\{D \frac{\alpha_H}{\alpha_H}, 1\}\text{ if } x > \alpha_{HH} + D\frac{\alpha_H}{\alpha_H}, 1\text{ otherwise.}\}

We now turn to the two-dimensional screening problem.

5 Two-dimensional screening

From now on, we let individuals not only differ in their risk levels, but also in their risk aversion. The insurance company then faces the following bivariate probability distribution of types:
The correlation between risk (μ) and risk aversion (ν) plays an important role in the analysis. This is given by

$$\text{corr} (\mu, \nu) = \frac{E(\mu - E\mu)(\nu - E\nu)}{\sigma_\mu \sigma_\nu} = \frac{\alpha_{HH} \alpha_{LL} - \alpha_{LH} \alpha_{HL}}{\sqrt{\alpha_L \alpha_H} \sqrt{\alpha_L \alpha_H}}.$$

In what follows, we let ρ represent the numerator of the correlation expression: viz., $\rho \overset{\text{def}}{=} \alpha_{HH} \alpha_{LL} - \alpha_{LH} \alpha_{HL}.$

To parameterize the distribution of types, we use the triplet $(\alpha_H, \alpha_{HH}, \rho),$ and have the remaining fractions determined by

$$\alpha_{HL} = \alpha_H - \alpha_{HH}, \quad (17)$$

$$\alpha_{LH} = \alpha_{HH} \frac{1 - \alpha_H}{\alpha_H} - \frac{\rho}{\alpha_H}, \quad \text{and}$$

$$\alpha_{LL} = (\alpha_H - \alpha_{HH}) \frac{1 - \alpha_H}{\alpha_H} + \frac{\rho}{\alpha_H}. \quad (19)$$

Non-negativity of α_{LH} and α_{LL} requires that $-\alpha_{HL}(1 - \alpha_H) \leq \rho \leq \alpha_{HH}(1 - \alpha_H).$ The feasible set of distribution parameters is then

$$\mathcal{A}_0 = \{ (\alpha_H, \alpha_{HH}, \rho) \in [0, 1]^2 \times R \mid \alpha_{HH} \leq \alpha_H,$$

$$\text{and} \quad -(\alpha_H - \alpha_{HH})(1 - \alpha_H) \leq \rho \leq \alpha_{HH}(1 - \alpha_H) \}.$$

The other parameters of the model, D and $x,$ pertain to the characteristics of the insurance takers. This part of the parameter space is denoted as the types set $\mathcal{T}_0:$

$$\mathcal{T}_0 = \{ (D, x) \in R_+ \times (0, 1) \}.$$

It turns out that D and x are sufficient to describe the problem—we can discard the original parameters μ_i and $\nu_j (i, j = H, L).^{11}$

In our analysis, we focus on the case in which the correlation of characteristics is non-positive ($\rho \leq 0$). Arguably, this is the most empirically relevant situation: highly risk-averse individuals tend to take more precautions and

11The fact that four parameters can be reduced to two follows from the fact that we can normalize ν_L to unity, and because, in the monopolist problem only, $\Delta \mu$ matters—see (15).
are thereby less likely to experience losses. Our model could be seen as a reduced form of a more general model in which individuals have initially taken such precautions before going to the insurance market. Second, there is a pragmatic reason for this restriction: under negative correlation, the typology of the equilibrium set of contracts is already complex, but mostly invariant to the degree of negative correlation. By contrast, with positive correlation, the degree of correlation starts to matter for characterizing the optimal contract menus in the parameter space. Thus, we restrict the set of distribution parameters to

\[A_1 = \{(\alpha_H, \alpha_{HH}, \rho) \in A_0 \text{ and } \rho \leq 0\} \].

The monotonicity conditions (9) and (10) imply that there are only two possible orderings of co-insurance rates, as follows:

Order 1: \(0 = c_{HH} \leq c_{HL} \leq c_{LH} \leq c_{LL} \leq 1\), \hspace{1cm} (20)
Order 2: \(0 = c_{HH} \leq c_{LH} \leq c_{HL} \leq c_{LL} \leq 1\). \hspace{1cm} (21)

Lemma 1 If Order 1 applies with \(c_{HH} < c_{LH}\), it is optimal to pool \(HL\) with \(HH\) if and only if \(x > \frac{a_{HH}}{a_H}\).

This result is intuitive. With Order 1, the only type that may envy the contract for \(HL\) is \(HH\). Thus, the choice of \(c_{HL}\) is only governed by weighing the profits from these two types. Because they have the same risk levels, we can apply Theorem 3 to this subgroup. Given that the fraction of highly risk-averse individuals in this group is \(\frac{a_{HH}}{a_H}\), the result follows.

In our technical companion paper, we show that no more than five regimes solve the monopolist’s problem. By a regime, we mean a menu of contracts satisfying certain pooling or separation properties and coverage rankings. The five regimes are listed in Table 1, and distinguished as to whether the degree of separation of the low-risk types, measured as \(c_{LL} - c_{LH}\), is larger or smaller than the size of the lens formed by the indifference curves of \(HL\) and \(LH\) (\(\ell\)).
Table 1. The five equilibrium regimes.

<table>
<thead>
<tr>
<th>Regime</th>
<th>Order</th>
<th>separation degree of low-risk types: (c_{LL} - c_{LH} < \ell)</th>
<th>pooling of HL</th>
<th>Range(^a) for (x)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>(0 = c_{LL} - c_{LH} < \ell)</td>
<td>with (HH)</td>
<td>(1 - \alpha_{LL} < x \leq 1)</td>
<td>(HL) pooled with (HH) since (\frac{2 \alpha_{HH}}{\alpha_{HH} - \alpha_{HL}} < 1 - \alpha_{LL})</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>(0 < c_{LL} - c_{LH} < \ell)</td>
<td>with (HH) if (x > \frac{2 \alpha_{HH}}{\alpha_{HH} - \alpha_{HL}}) (LH) if (x < \frac{2 \alpha_{HH}}{\alpha_{HH} - \alpha_{HL}}) (x_{BM}(D) < x < 1 - \alpha_{LL}) (x_{BM}(D) < x < 1 - \alpha_{LL})</td>
<td>Only for high (D); (c_{LL} = 1)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>(0 < c_{LL} - c_{LH} = \ell)</td>
<td>with (HH) if (x > \frac{2 \alpha_{HH}}{\alpha_{HH} - \alpha_{HL}}) (LH) if (x < \frac{2 \alpha_{HH}}{\alpha_{HH} - \alpha_{HL}}) (\mathrm{min}{\frac{1 - \alpha_{LL}}{1 + \alpha_{LL}}, \frac{1}{1 + 2D}} < x \leq \mathrm{min}{1 - \alpha_{LL}, x_{BM}(D)})</td>
<td>(c_{LL} = 1) for high (D)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>(0 < \ell < c_{LL} - c_{LH})</td>
<td>with (HH, HL) and (LH) at (c = 0)</td>
<td>(x_{CE}(D) < x < \mathrm{min}{\frac{1 - \alpha_{LL}}{1 + \alpha_{LL}}, \frac{1}{1 + 2D}})</td>
<td>(c_{LL} = 1) for high (D) or low (x)</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>(0 < c_{LL} - c_{LH} < \ell)</td>
<td>with (LL)</td>
<td>(0 < x < x_{CE}(D))</td>
<td>(c_{LL} = 1) for high (D)</td>
</tr>
</tbody>
</table>

\(^a\)The functions \(x_{BM}(D) \) and \(x_{CE}(D) \) are defined below in the discussion of Fig. 8.

Note that **Regime E** distinguishes itself from the others in that Order 2 applies. Note also that full separation is never optimal. In the case of Order 1, the first part of Lemma (1) indicates that \(HL \) should be pooled with either \(HH \) or \(LH \). In the case of Order 2, the suboptimality of full separation follows from the following Lemma (proven in the Appendix).

Lemma 2 (suboptimality of full separation under Order 2) Suppose that \(HH \) is indifferent between her own contract and that for \(LH \), but strictly dislikes that for \(HL \), and suppose that \(LH \) is indifferent between her own contract and that for \(HL \), but strictly dislikes that for \(LL \), and suppose that \(HL \) is indifferent between her own contract and that for \(LL \). Then, profit can be increased by pooling \(HL \) with either \(LL \) or \(LH \).

In the companion paper, we prove the first main result, stated below.

Proposition 1 The five menu structures listed in Table 1 are potential solutions to the monopolist problem. If \(\rho \leq 0 \), no other menu structures can be optimal. In particular, full separation is never optimal.

We now give a characterization of each regime. In the next section, we explain when it pays for the insurer to move from one regime to another.

- **Regime A**
This regime pools the high-risk types at full insurance, and the low-risk types at high, but partial, insurance. Figure 3 illustrates. (In this figure and those that follow, solid/dashed indifference curves refer to high/low risk aversion, while bold/thin indifference curves refer to high/low risks).

Denoting the co-insurance rate for the low-risk types as \(c^A_L \), **Regime A** is described by

\[
\begin{align*}
c^A_L &= \min\left\{ D \frac{\alpha_H}{1 - \alpha_H}, 1 \right\}, \quad \text{and} \quad c^A_{HH} = c^A_{HL} = 0.
\end{align*}
\]

This policy corresponds to one under which individuals differ only in their risk dimensions (Theorem 2). Below, we argue that **Regime A** is optimal if \(x \) is sufficiently large (i.e., when heterogeneity in risk aversion is weak), more specifically when \(x \geq 1 - \alpha_{LL} \). Because a non-positive correlation ensures that \(1 - \alpha_{LL} > \frac{\alpha_{HH}}{\alpha_H} \), it follows from Lemma 1 that it is always optimal to pool \(HL \) with \(HH \) in **Regime A**.

From now on, we restrict the type space \(T_0 \) further by imposing an upper bound \(D_A \) on \(D \),

\[
T_1 = \{ (D, x) \in T_0 \mid D \leq D_A \}.
\]

This restriction ensures that \(c^A_L < 1 \). In other words, it rules out exclusion of the low-risk types when individuals are almost equally risk averse. This condition ensures that our model encompasses the market situation described by Stiglitz (1977).

Given that \(x \geq 1 - \alpha_{LL} > \alpha_H \), it follows that when **Regime A** applies, the pooling of the low-risk types happens at a “low” co-insurance rate, viz.,

\[
c^A_L < D \frac{x}{1-x} (= \frac{\alpha_H}{2\alpha_H}).
\]

- **Regime M**

This regime gives full insurance to \(HH \), insures \(LH \) at a small but positive co-insurance rate, but excludes \(LL \). Type \(HL \) is pooled with \(HH \) if \(x > \frac{\alpha_{HH}}{\alpha_H} \); otherwise, this type is pooled with \(LH \) (cf Lemma 1). Figure 4 (drawn for \(x > \frac{\alpha_{HH}}{\alpha_H} \)) illustrates this regime.
Below, we show that $x < 1 - \alpha_{LL}$ is a necessary condition for **Regime M** to be optimal.

The optimal values for the co-insurance rates are given by

$$c^M_{LL} = 1,$$

$$c^M_{LH} = \begin{cases}
D \frac{\alpha_H x}{\alpha_H (1-x) + \alpha_{HL} x} & \text{if } x > \frac{\alpha_{HH}}{\alpha_H}, \\
D \frac{\alpha_H x}{\alpha_{HL} + \alpha_{LH}} & \text{if } x \leq \frac{\alpha_{HH}}{\alpha_H}.
\end{cases}$$

$$c^M_{HH} = 0, \quad \text{and} \quad c^M_{HL} = \begin{cases}
0 & \text{if } x > \frac{\alpha_{HH}}{\alpha_H}, \\
D \frac{\alpha_H x}{\alpha_{HL} + \alpha_{LH}} & \text{if } x \leq \frac{\alpha_{HH}}{\alpha_H}.
\end{cases}$$

Thus, the difference between **A** and **M** is that the low-risk types (LH and LL), are now separated from one another, but the degree of separation is “small”, in the sense that $c_{LL} - c_{LH} < \ell$, the size of the lens.

• Regime B

In this regime, the two low-risk types are separated by positioning them on each side of the lens. That is, they satisfy $c_{LH} + c_{LL} = 2 \frac{Dx}{1-x}$. We may distinguish between **Regime Bf** and **Regime Bp**, depending on whether LH obtains full insurance ($c_{LH} = 0$) or partial insurance ($c_{LH} > 0$), respectively. For the latter regime, we can also make a distinction based on whether LL individuals are included (BpI; $c_{LL} < 1$) or excluded (BpX; $c_{LL} = 1$) from insurance. Lemma 1 can be applied to determine whether HL should be pooled with HH ($x \geq \frac{\alpha_{HH}}{\alpha_H}$) or LH ($x < \frac{\alpha_{HH}}{\alpha_H}$). The three panels of Figure 5 (drawn for $x \geq \frac{\alpha_{HH}}{\alpha_H}$) illustrate.

Regime B may be summarized as follows:

$$c^B_{HH} = 0,$$

$$c^B_{LH} = \begin{cases}
2D \frac{x}{1-x} - 1 & \text{(BpX),} \\
D \frac{(1+\alpha_{LH} + \alpha_{LL})(1-x)(1+\alpha_{HH})}{(1-x)(1-x)} & \text{(BpI),} \\
0 & \text{(Bf),}
\end{cases}$$

$$c^B_{HL} = \begin{cases}
0 & \text{if } x > \frac{\alpha_{HH}}{\alpha_H}, \\
c^B_{LH} & \text{if } x \leq \frac{\alpha_{HH}}{\alpha_H}.
\end{cases} \quad \text{and} \quad c^B_{LL} = \begin{cases}
1 & \text{(BpX),} \\
D \frac{2\alpha_{LH} + \alpha_{HH}(1-x)}{(1-\alpha_H)(1-x)} & \text{(BpI),} \\
2D \frac{x}{1-x} & \text{(Bf).}
\end{cases}$$
• **Regime C**

Regime C is one under which everybody is fully insured, except for the LL individuals who face a very high co-insurance rate (CI) or are even excluded (CX). Moreover, the screening between LH and LL is now very thorough in the sense that $c_{LL} - c_{LH} > \ell$. Consequently, $c_{LL} \geq 2\frac{\Delta x}{x}$. This regime is illustrated in Figure 6.

—Figure 6 here—

Regime C thus balances a high premium income from the “upper” types with the loss in profit from distorting LL’s contract. Intuitively, with few LL individuals around, such distortion is attractive, and with hardly any of them around, it is even optimal to exclude them altogether.

We can summarize **Regime C** as follows:

$$c^C_{HH} = c^C_{HL} = c^C_{LL} = 0, c^C_{LH} = \left\{ \begin{array}{ll} D^{1-\alpha_{LL}} \alpha_{LL} & \text{(CI)}, \\ 1 & \text{(CX)}. \end{array} \right.$$

• **Regime E**

A common feature of all previous regimes is that Order 1 applies ($c_{HL} \leq c_{LH}$). In **Regime E**, the opposite is true: HL’s contract is now severely distorted by being pooled with LL. This makes room for increasing the distortion on LH, which, in turn, allows the insurer to extract more rent from HH individuals. Again, if there are few low-risk-averse individuals around, it may pay to exclude these individuals from the market (EX), otherwise they are included but receive limited insurance (EI). Figure 7 illustrates.

—Figure 7 here—

Separation of LH from LL is once more minimal: $c_{LL} - c_{LH} < \ell$. Under Order 1, separation of LL from LH is carried out to increase the profits from HH, HL and LH at the cost of a lower profit from LL. Under Order 2, HL is pooled with LL so as to extract more rent from the highly risk-averse types, HH and LH. Across these two types, rent extraction is optimized in the standard way (cf Theorem 2).

Denoting the common co-insurance rate for HL and LL as c_{L}, the optimal co-insurance rates for **Regime E** are

$$c^E_{HH} = 0, c^E_{LH} = D^{\alpha_{HH}x} \alpha_{LL}, \text{ and } c^E_{L} = \left\{ \begin{array}{ll} D^{x_{HH}} \gamma_{LH} & \text{(EI)}, \\ 1 & \text{(EX)}. \end{array} \right.$$

(23)
This concludes the presentation of the five regimes, or contract menus. Loosely speaking, one can say that the degree of separation between LH and LL, viz., $c_{LL} - c_{LH}$, increases as one moves from A ($c_{LL} - c_{LH} = 0$) into M ($0 < c_{LL} - c_{LH} < \ell$), into B ($0 < c_{LL} - c_{LH} = \ell$), and further into C ($0 < \ell < c_{LL} - c_{LH}$). In Regime E, the degree of separation becomes minor again, but E is qualitatively different because it makes use of a different order.

6 Comparison of regimes

Having established the optimal co-insurance structure for each regime, we now investigate for which (D,x) combinations each of the regimes becomes optimal. The precise comparisons are relegated to the technical companion paper. Here, we limit ourselves mainly to a graphical presentation by partitioning the (D,x) space into subspaces according to which regime secures the monopolist the highest profit. We first establish the optimal menu in the neighbourhoods of the upper and lower boundaries for x. Thereafter, we sketch the optimal menus for intermediate values of x.

When there is no heterogeneity in risk aversion, we know from Theorem 2 that Regime A is optimal. By a continuity argument, this is also true for small differences between H and L. Low-risk types will be partially insured while high-risk types obtain full insurance.

Theorem 5 As $x \to 1$, the optimal contract menu is defined by Regime A.

Inspection of (23) shows that for small enough x, it is optimal to exclude the two types with low-risk aversion (HL and LL) in Regime E. For the other regimes, one of the risk-tolerant types (i.e., HL) continues to buy insurance. However, if x approaches zero, the willingness to pay for insurance among highly risk-averse types (HH and LH) becomes infinitely larger than that among low-risk-averse types. Therefore, it cannot be optimal to keep providing the latter with insurance, as this constrains the premia that can be charged to the former.

Theorem 6 As $x \to 0$, the optimal contract menu is defined by Regime EX.

Before we consider when the other regimes become optimal, note that because Regimes A, M, B, and C all share the same order (Order 1),
when moving from one regime into the adjacent one, at least one of the co-
insurance rates changes continuously. **Regime E**, on the other hand, makes
use of Order 2. The move from this regime into the adjacent one makes all
co-insurance rates jump (except for \(c_{HH} \), which is always zero). Identification
of the borderline of regime E is then only possible by comparing the maximal
profit functions. This is explained in more detail in our technical companion
paper.

We now explain in a heuristic way the optimal regimes for intermediate
\(x \). For this purpose, suppose that \(x \) is close to unity to begin with; i.e., there
is initially hardly any difference in risk aversion, but then \(x \) steadily falls in
value, which signifies increased heterogeneity in risk aversion. With \(x \) close
to unity, the optimal menu is given by **Regime A**. The size of the lens is
\[
\ell = 2 \left(D \frac{x}{1-x} - c^A_L \right) = 2 \left(D \frac{x}{1-x} - D \frac{1-c_{AH}}{\alpha_H} \right).
\]
As \(x \) falls, \(\nu_H \) starts to exceed \(\nu_L \). This makes it optimal to start screening the \(LL \) from the \(LH \) types: by
providing \(LL \) with less coverage (at a lower premium), \(LH \) (and therefore
also the high-risk types \(HH \) and \(HL \)) can be charged a higher premium.
However, because \(LL \) was initially pooled with \(LH \) at the left-hand crossing,
a marginal increase in \(c_{LH} \) is impossible for incentive compatibility reasons.
What is possible is to move \(LL \) from the left-hand crossing to the co-insurance
rate corresponding to the right-hand crossing, and adjusting her premium to
keep her rent at zero. This becomes optimal when \(x < 1 - \alpha_{LL} \); then,
Regime BpI takes over. This is possible as long as the lens is not too big,
i.e., if \(c^A_L + \ell = 2D \frac{x}{1-x} - D \frac{1-c_{AH}}{\alpha_H} \leq 1 \). However, when \(D \) is large, the previous
reshuffling would involve a co-insurance rate for \(LL \) that exceeds unity (and
a negative premium). Because this is ruled out, the best the insurer can do
is to exclude \(LL \) and to extract all the rent from \(LH \). This is what happens in
Regime M. It can be shown that in this regime, the right-hand crossing,
i.e., \(c^M_{LH} + \ell \), is increasing in \(x \). Hence, as \(x \) falls further, then at some stage,
this right-hand-side crossing will coincide with the no-insurance point \((1,0)\).
This happens when \(x \) falls short of \(x_{BM}(D) \).\(^1\) At that point, **Regime BpX**
takes over from **Regime M**. See Figure 8.

\(^1\)That is, \(x_{BM}(D) \) solves \(2 \frac{Dx}{1-x} - c^M_{LH} = 1 \).

---Figure 8 here---

When \(x \) falls far enough, it pays to increase the wedge between \(c_{LL} \) and
\(c_{LH} \), even in excess of \(\ell \). That is, the point at which **Regime C** takes over
from Regime B. In the companion paper, we show that
\[\pi^C > \pi^B \iff x < \min \left\{ \frac{1 - \alpha_{LL}}{1 + \alpha_{LL}} \frac{1}{1 + 2D} \right\}, \]
where \(\alpha_{LL} \) is given by (19).

When there is substantial heterogeneity in risk aversion (when \(x \) is very small), it becomes profitable to screen the highly risk averse as a group from the low-risk-averse group. The only way to implement this is by switching to Order 2. Then, Regime E is optimal. In the companion paper, we also show that there exists a function, \(x_{CE}(\alpha_H, \alpha_{HH}, \rho, D) \), that is non-increasing in \(D \), with \(x_{CE}(\alpha_H, \alpha_{HH}, \rho, D) < \frac{1}{1+2D} \) for any \(D \in [0, \bar{D}_A] \), such that
\[\pi^E > \pi^C \iff x < x_{CE}(\alpha_H, \alpha_{HH}, \rho, D). \]

This function is found by comparing the maximal profit under Regime C with the maximal profit under Regime E. Because there is continuity when switching from B to C, whereas there is discontinuity when switching from C to E, the question arising is whether \(C \) can be dominated by \(E \) for any \(x \) that makes \(C \) dominate B. In other words, does it make more sense to compare \(E \) with \(B \)? This is illustrated in Figure 9. The profit function \(\pi^E \) intersects with \(\pi^C \) at \(\bar{x} \), while the function \(\bar{E} \) dominates \(\pi^C \), indicating that once \(x \) falls short of \(\bar{x} \), Regime B should be replaced by Regime E.

For each value of \(\rho \ (\leq 0) \), we can define a region \(\mathcal{R}(\rho) \) in the \((\alpha_H, \alpha_{HH})\) space such that this is indeed what happens:
\[\mathcal{R}(\rho) = \{(\alpha_H, \alpha_{HH}) \in [0, 1]^2 : x_{CE}(\alpha_H, \alpha_{HH}, \rho, D)|_{\text{small } D} \geq \frac{1 - \alpha_{LL}(\alpha_H, \alpha_{HH}, \rho)}{1 + \alpha_{LL}(\alpha_H, \alpha_{HH}, \rho)} \} \]
Bundles in this region can be shown to be feasible.\(^{13}\) Figure 10a–c displays \(\mathcal{R}(\rho) \) for \(\rho = 0, -\frac{1}{30}, -\frac{2}{30} \). Thus, if \(\rho = -\frac{2}{30} \), then for almost all \((\alpha_H, \alpha_{HH})\) that are feasible in combination with this value for \(\rho \) (the area delineated by the dashed line), it transpires that the interval for which Regime C is optimal, \([x_{CE}(\alpha_H, \alpha_{HH}, \rho, D), \min\{\frac{1 - \alpha_{LL}(\alpha_H, \alpha_{HH}, \rho)}{1 + \alpha_{LL}(\alpha_H, \alpha_{HH}, \rho)}, \frac{1}{1+2D}\}]\), is non-empty. For \(\rho \leq -0.089 \), “almost all” can be replaced by “any”.

\(^{13}\)That is, if \((\alpha_H, \alpha_{HH}) \in \mathcal{R}(\rho) \) for some \(\rho \leq 0 \), then \((\alpha_H, \alpha_{HH}, \rho) \in A_1.\)
We therefore restrict the set of distribution parameters further to
\[\mathcal{A}_2 = \{ (\alpha_H, \alpha_{HH}, \rho) \in \mathcal{A}_1 \text{ and } (\alpha_H, \alpha_{HH}) \notin \mathcal{R}(\rho) \}. \]
However, from the previous discussion, \(\mathcal{A}_2 \) is almost as large as \(\mathcal{A}_1 \).

We now provide the second main result of the paper.

Proposition 2 Suppose that \((\alpha_H, \alpha_{HH}, \rho) \in \mathcal{A}_2\). Then, the optimal menu structure as a mapping from \(T_1 \) into the menu set is as illustrated in Figure 8.\(^{14}\)

Recall that \(D \) measures the incentive for \(\mu_H \)-type individuals to mimic \(\mu_L \)-type individuals, normalized by (twice) the risk premium of the latter. A high co-insurance rate discourages the former group from applying for the contracts intended for the latter, and thus allows insurers to charge the former group more for full insurance. Regimes \(M, BX, CX, \) and \(EX \) all exclude \(LL \); they become optimal for high levels of \(D \).

On the other hand, \(x \) measures the extent of similarity in risk aversion. Dissimilarity warrants a contract menu that screens low-risk-averse consumers from highly risk-averse ones. The latter group is much more willing to pay for insurance coverage, and the monopolist takes advantage of this. Such screening is absent in **Regime A** and maximal in **Regime EX**, under which all risk-tolerant individuals are excluded from coverage. The result is a market with only highly risk-averse customers, who have private information on their expected losses. The standard screening problem thus applies.

We conclude this section by plotting in Figure 11 the optimal co-insurance rates for \(LL \) and \(LH \) underlying the different regimes (assuming that \(D < \frac{1-\alpha_H}{\alpha_{HH}+(1-\alpha_H)(1-\alpha_{LL})} \) such that **Regime M** can be ignored). The analysis of Section 8 is based on this figure.

\(^{14}\)As explained in the previous section, whether \(HL \) is pooled with \(HH \) or with \(LH \) in **Regimes Bp** and **M** depends on whether \(x \) exceeds or falls short of \(\frac{\alpha_{LL}}{\alpha_{HH}} \). Given that \(\alpha_H = \frac{\alpha_{HH}}{\alpha_H} = \frac{\rho}{\alpha_H} \), with non-positive correlation, \(\frac{\alpha_{HH}}{\alpha_H} \) will never exceed \(\alpha_H(\frac{1}{1+\alpha_{HH}+\alpha_{LL}}) \). Figure 8 is based on \(\alpha_H = .6, \alpha_{HH} = .2 \) and \(\rho = 0 \). Hence, \(\frac{\alpha_{HH}}{\alpha_H} = \alpha_H, \) and all \((\hat{D}, x)\) combinations in the regions for **BpX** and **M** have pooling of \(HL \) with \(HH \) rather than with \(LH \).
7 The positive correlation test

Chiappori et al. (2006) showed that a common prediction of any model of a competitive insurance market with asymmetric information is a strictly positive relationship between the degree of coverage and the expected loss across contracts. This is quite a strong result, and we refer to it as positive monotonicity (PM). This property implies a positive correlation between coverage and risk, but the converse is not true.

In the empirical literature on testing for asymmetric information in insurance markets, researchers typically rely on estimating the correlation coefficient between coverage and the expected loss, and then use a one-sided test to determine whether this coefficient is statistically significantly positive (see, e.g., Cohen and Siegelman, 2010; Finkelstein and McGarry, 2006). The empirical evidence on positive correlation is somewhat weak; there is even evidence of negative correlation in some markets. This is quite surprising, because the result of Chiappori et al. (2006) is general; conditional on the competition assumption, it holds for any combination of moral hazard and adverse selection in underlying risk.

As mentioned in the introduction, there are proposed theoretical explanations for this lack of evidence. One is the so-called “cherry picking argument” (Chiappori and Salanié, 2000) or “propitious selection” (Hemenway, 1990), which combines adverse selection in risk preference (but not in the underlying risk) with moral hazard. The argument is that if individuals take precautions having purchased insurance, then highly risk-averse individuals

15The later phenomenon is termed “advantageous or propitious selection”. In regard to life insurance, see, e.g., Cawley and Philipson (1999) and McCarthy and Mitchell (2003), and in long-term care, see, e.g., Finkelstein and McGarry (2006). On the other hand, Olivella and Vera (2011) show that in duplicate or substitutive private health insurance systems (in which the public and (competitive) private insurance sectors offer the same portfolio of services), if (but not only if) there is heterogeneity in risks only, then propitious selection into private insurance should be observed if and only if information on risks is symmetric.

16When the literature refers to moral hazard, this could encompass two distinct phenomena. One relates to individuals who enjoy more coverage having less of an incentive to undertake precautionary behaviour, which makes them observationally more risky. The other arises because one does not necessarily observe actual risk but the usage of, say, health services. Because coverage implies a lower cost of accessing these services, individuals may use more of these services because they have more coverage, not because they are more risky. Notice that both types of moral hazard reinforce the positive correlation. Of course, one of the econometric issues is that, even after observing some positive correlation, it is hard to disentangle the adverse selection and either of the two moral hazard effects.
will increase their coverage as well as take more precautions, everything else being equal. This may then result in a negative correlation between observed risk and coverage.\footnote{17}{See, e.g., Jullien et al. (2007), De Donder and Hindriks (2009), and Finkelstein and McGarry (2006).}

Because the optimal menu in a monopoly market with two-dimensional screening may display Order 2, PM will cease to hold; for a subset of types \((LH\\text{ and } HL)\), coverage is negatively related to risk size. This of course does not imply that the correlation between risk and coverage is negative, because PM does hold for other subsets of types (between \(HH\) on the one hand and \(LH\) and \(LL\) on the other). This also suggests that a sufficiently negative correlation between risk and risk aversion (i.e., a sufficiently small \(\rho\)) ensures a negative correlation between coverage and risk size. This is shown below.

In fairness, Chiappori et al. (2006) pointed out that in a monopoly, the PM property may be violated. They do this by starting with a model in which only preference heterogeneity exists (cf. Section 4), and then by introducing an infinitesimal amount of exogenous risk heterogeneity that is perfectly negatively correlated with risk heterogeneity (i.e., the more risk-averse agents have a slightly smaller accident probability). We show that the PM property does not hold whenever Regime E applies, even if the underlying risk and risk preference are independently distributed.

Translated into our setting, the Chiappori et al. (2006) proposition may be stated as follows:

Consider two contracts \(C_a\) and \(C_b\) **that are offered on the market. Suppose that:** (i) \(C_a\) gives more coverage than \(C_b\), i.e., \(c_a < c_b\); and (ii) the per capita profit generated by contract \(a\) does not exceed that of contract \(b\), \(\pi(C_a) \leq \pi(C_b)\). **Then, (iii) the expected loss to those consumers signing up for contract \(a\) should exceed the expected loss of those consumers signing up for contract \(b\), i.e., \(\mu(C_a) \geq \mu(C_b)\).**

It is easy to see that property (iii) is satisfied in all regimes except for Regime E. In that regime, the contract for \(LH\) has more coverage than the contract for the low-risk-averse individuals \((LL\text{ and } HL)\). The PM property would then require that \(\mu(C_{LH}) = \mu_L > \mu(C_{LL}) = \left(\frac{\alpha_{LL}}{\alpha_L}\mu_H + \frac{\alpha_{HL}}{\alpha_L}\mu_L\right)\), which is obviously violated. The culprit is the violation of condition (ii): \(C_{LH}^E\) generates a higher per capita profit than does \(C_{LL}^E\). This can be seen as
follows:

\[
\pi(C^E_L) = \frac{\alpha_{HL}}{\alpha_L} \left\{ \frac{1}{2} [1 - (c^E_L)^2] \nu_L - (1 - c^E_L) \Delta \mu \right\} + \frac{\alpha_{LL}}{\alpha_L} \frac{1}{2} [1 - (c^E_L)^2] \nu_L
\]

\[
= \frac{1}{2} [1 - (c^E_L)^2] \nu_L - \frac{\alpha_{HL}}{\alpha_L} (1 - c^E_L) \Delta \mu, \\
\]

\[
\pi(C^E_{LH}) = \frac{1}{2} [1 - (c^E_{LH})^2] \nu_H - \frac{1}{2} [1 - (c^E_{LH})^2] \Delta \nu
\]

\[
= \frac{1}{2} [1 - (c^E_{LH})^2] \nu_H.
\]

Because \(c^E_{LH} < c^E_L \), it follows that \(\pi(C_{LH}) > \pi(C_L) \), irrespective of which optimal values the co-insurance rates take under Regime E.

Performing a positive correlation test on our model would amount to calculating the covariance across contracts between \(1 - c(C) \) and \(\mu(C) \), as follows:

\[
cov(1 - c(C_{ij}), \mu(C_{ij})) = \sum_{i,j} \alpha_{ij}(1 - c_{ij}) \mu_i - \sum_{i,j} \alpha_{ij}(1 - c_{ij}) \sum_{i,j} \alpha_{ij} \mu_i.
\]

As the second part of the following proposition shows, when the optimal regime is EI, this covariance is negative only if the correlation between expected loss and risk aversion, \(\rho \), is sufficiently negative.

Proposition 3 (i) For a sufficient degree of heterogeneity in risk aversion, such that Regime E prevails, some low-risk individuals (LH) purchase more coverage than do some high-risk individuals (HL). (ii) In the case of Regime EI, \(cov(1 - c(C_{ij}), \mu(C_{ij})) < 0 \) if and only if \(\rho < -\alpha_{HH}(x - \frac{\alpha_{HL}}{\alpha_H}) \) \((< 0) \).

In other words, the advantageous selection among LH and HL, described by part (i), may exactly offset the standard adverse selection, such that any correlation between risk and coverage vanishes. Finkelstein and McGarry (2006) show that the long-term care insurance market may suffer from asymmetric information, despite the absence of evidence for a positive correlation between risk and coverage. Our model helps in interpreting this evidence.

8 Gender discrimination

Crocker and Snow (1986) have shown that imperfect categorical discrimination in insurance—such as gender discrimination—always expands the efficiency frontier. Hoy (1982) showed how categorization based on a signal
may lead to a Pareto improvement in a competitive insurance market if the signal conveys information about the level of risk. In this section, we ask when such efficiency gains arise in a monopolistic market structure. We show that a Pareto improvement is possible if the signal, such as gender, is informative about risk aversion.

Let us write $p(\mu, \nu, g)$ as the likelihood function that an arbitrary insuree has an expected loss of μ, risk aversion of ν and gender $g \in \{m, w\}$. A monopolist who is allowed to condition on gender will, for each gender, design an optimal contract menu based on the risk-aversion ratio, x, the risk difference parameter, D, and the probability matrix,18

$$
\left(\begin{array}{cc}
 p(\mu_L, \nu_L | g) & p(\mu_L, \nu_H | g) \\
 p(\mu_H, \nu_L | g) & p(\mu_H, \nu_H | g)
\end{array} \right).
$$

We now assume that risk aversion is a sufficient statistic for gender with respect to the expected loss:

Condition S $p(\mu | \nu, g) = p(\mu | \nu)$.

Condition S means that within a given risk-aversion class, the observation of a person’s gender carries no extra information about the risk class to which this person belongs.19 In general, sufficiency is not enough to break the link between gender and expected loss. If female drivers are highly risk averse, and if this attitude leads them to careful driving, then there will still be a connection between gender and expected loss. This last connection is broken by the assumption that expected loss is independently distributed of risk aversion—i.e., risk aversion has no impact on driving. This allows us to state the following result.

Lemma 3 If the likelihood function $p(\cdot)$ satisfies Condition S and if μ and ν are independently distributed, then μ and g are also independently distributed: $p(\mu | g) = p(\mu)$.

Thus, these assumptions support the conclusion reached by the European Commission—that gender is insignificant in explaining risk type.

18We assume that the support of the distribution of types does not vary with the signal. Alternatively, the support could be made dependent on the signal. This, in effect, amounts to assuming that the support consists of more than four (μ, ν)-pairs, some of which have zero probability mass, depending on the observation of the signal.

19Two equivalent formulations of Condition S are: $p(g | \mu, \nu) = p(g | \nu)$ and $p(\mu, \nu | g) = p(\mu | \nu) \cdot p(\nu | g)$.
Because a gender-discriminating firm will use the probability functions
\(p(\mu, \nu | g) \) \((g = m, w)\), rather than the single function \(p(\mu, \nu) \), to design menus, and because profits and consumer rents depend on the co-insurance rate \(c_{LL} \), it is important to determine the effect of \(p(\cdot) \) on \(c_{LL} \). For this purpose, let us assume that \(D < \frac{(1-\alpha_H)\alpha_{LL}}{\alpha_{LL}+\alpha_H(1-\alpha_H)(1-\alpha_{LL})} \) so that we can ignore Regime M. From proposition 2, it follows that without discrimination, the upper boundaries of regimes C, Bf, and BpI are determined by the parameters \(\alpha_{LL} \) and \(\alpha_{LH} \). Fixing \(x, \alpha_L \) (and therefore \(\alpha_H = 1 - \alpha_L \)) allows one to trace out the optimal value of \(c_{LL} \) as a function of \(\alpha_{LL} \). This yields Figure 12, in which it is assumed that \(\frac{1-x}{1+x} < \frac{1}{2}(1+\alpha_L)(1-x) \). This means that the curve for \(LL \)'s optimal co-insurance rate is flat for some range of \(\alpha_{LL} \) values; this is equivalent to assuming that
\[
\frac{1-\alpha_L}{1+\alpha_L} < x. \tag{24}
\]

Let us define \(\omega_L \) \((\omega_H) \) as the likelihood that an arbitrary person with low (high) risk aversion is a female; i.e., \(\omega_L \overset{\text{def}}{=} p(w|\nu_L) \) and \(\omega_H \overset{\text{def}}{=} p(w|\nu_H) \). If half the population are women, then \(p(w) = \omega_H\alpha_H + \omega_L(1-\alpha_H) = \frac{1}{2} \).

There is now ample evidence that men are on average less risk averse than women.\(^{20}\) For our model, this means that \(p(\nu_L|w) < p(\nu_L) < p(\nu_L|m) \). An insurance company that is allowed to gender discriminate, having observed the customer’s gender \(g \), will update the probability \(\alpha_{LL} \) in the following way:

\[
\alpha_{LL|m} \overset{\text{def}}{=} p(\mu_L, \nu_L|m) = p(\mu_L|m) \cdot p(\nu_L|m) = p(\mu_L) \cdot p(\nu_L|m) < \alpha_{LL}, \quad \text{and} \]
\[
\alpha_{LL|w} \overset{\text{def}}{=} p(\mu_L, \nu_L|w) = p(\mu_L|w) \cdot p(\nu_L|w) = p(\mu_L) \cdot p(\nu_L|m) > \alpha_{LL}.
\]

where the first equality sign follows from Condition S and the second follows from independence. Thus, \(\alpha_L \) and \(\alpha_H \) do not change when gender is observed.

Suppose now that (24) holds, and suppose that the proportion of \(LL \) individuals as a whole, the proportion among men, and the proportion among

women, are $\alpha_{LL}, \alpha_{LL|m},$ and $\alpha_{LL|w}$, respectively. Suppose also that these proportions are as illustrated in Figure 13.

Then, we can conclude that because

$$\frac{1 - x}{1 + x} < \alpha_{LL|w} < \alpha_{LL} < \frac{1}{2}(1 + \alpha_{L})(1 - x), \tag{25}$$

the co-insurance rate for LL women will remain at its no-discrimination value, and the rents of LH women, HL women, and HH women will not change because of discrimination (and LL women continue to receive zero rent). On the other hand, because

$$\frac{1 - x}{1 + x} < \alpha_{LL} < \frac{1}{2}(1 + \alpha_{L})(1 - x) < \alpha_{LL|m}, \tag{26}$$

the optimal co-insurance rate for LL men will drop below its no-discrimination value, and therefore, all men will receive more rent when offered the optimal contract menu for men (except LL men, who continue to receive zero rent).²¹

The insurance company will increase its total profits because of finding it optimal to choose a new menu for its male clientele—it could have stuck to the same menu as in the no-discrimination case. Thus, a Pareto improvement is possible by allowing gender discrimination. As can be seen from the figure, conditions (25) and (26) are not only sufficient for a Pareto improvement, but also necessary. We summarize this result in the following proposition.

Proposition 4 Suppose that Condition S holds, and that μ and ν are independently distributed. Suppose that (24) holds. For given values of x, α_{L}, and D, allowing gender discrimination will lead to a Pareto improvement in the insurance market if and only if conditions (25) and (26) hold.

Condition (24) is satisfied when the proportion of low-risk individuals, α_{L}, is not too small in relation to x.

The intuition for Proposition 4 is the following. Because men are on average less risk averse, the “male” market consists of more LL types than does the overall market. This makes the distortion of the LL contract that

²¹Because the optimal menu for men is of the type Bp, the rents are given as follows:

$R_{HH} = R_{HL} + \frac{1}{2}\Delta\nu, R_{HL} = R_{LL} + (1 - c_{LL})\Delta\mu, R_{LH} = R_{LL} + \frac{1}{2}(1 - c_{LL}^2)\Delta\nu, \text{ and } R_{LL} = 0.$
was optimal for the entire market too costly for the “male” market: offering
LL men a lower co-insurance rate (in return for a higher premium) increases
profits from this market segment sufficiently to compensate for the lower
rents extracted from the "higher" male types. Hence, all men benefit, and
so does the monopolist.

9 Conclusion

In this paper, we studied the outcome in a monopolistic insurance market
when the insurer is only aware of the statistical distribution of the expected
loss and the level of risk aversion of its customers. We formulated a mean–
variance model that results in quasilinear preferences over contracts; we iden-
tified the five contract menus that emerge in equilibrium; and for each menu,
we derived the optimal co-insurance rates. Next, we identified for each menu
the subset of parameter values for which that menu is optimal. We did this
under non-positive correlation between the two characteristics.

We found:

- it is never optimal to fully separate all the types. In other words, there
 will always be some pooling of types in equilibrium;
- the greater is the heterogeneity in the expected loss, the more it pays
to screen the low-risk from the high-risk types, by imposing a high
co-insurance rate on the former;
- the greater is the heterogeneity in terms of risk aversion, the more it
pays to screen the low-risk-averse from the highly risk-averse by impos-
ing a high co-insurance rate on the former; and
- the property of positive monotonicity between coverage and expected
 loss need no longer hold—neither does the property of positive corre-
 lation.

We also identified an open set of parameter values such that when the fe-
male distribution of risk aversion first order stochastically dominates the male
distribution, allowing gender discrimination results in a Pareto improvement
in this market. Hence, our analysis shows that one should be careful when
abolishing gender categorization; even when gender itself does not (statisti-
cally) affect the expected level of losses or claims, it may affect the outcome
in an imperfectly competitive insurance market so that nobody gains and some participants become worse off.

References

Appendix

Proof of Lemma 2.
Suppose that full separation under Order 2 is optimal. This situation is depicted in Figure 14.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure14.png}
\caption{Figure 14 here}
\end{figure}

First note that \(c_{LL}\) must exceed \(\frac{\Delta \mu}{\Delta \nu} = D_{\frac{x}{1-x}}\) because, otherwise, \(LH\) and \(HL\) could not have been separated.

The profits from the different types are as follows.

\[
\begin{align*}
\pi_{HH} &= \frac{1}{2}(1 - c_{HH}^2)\nu_H - (1 - c_{HL})\Delta \mu + (1 - c_{HL})\Delta \mu - \frac{1}{2}(1 - c_{HL}^2)\Delta \nu - (1 - c_{LL})\Delta \mu \\
\pi_{HL} &= \frac{1}{2}(1 - c_{HL}^2)\nu_L - (1 - c_{LL})\Delta \mu \\
\pi_{LH} &= \frac{1}{2}(1 - c_{LH}^2)\nu_H + (1 - c_{HL})\Delta \mu - \frac{1}{2}(1 - c_{HL}^2)\Delta \nu - (1 - c_{LL})\Delta \mu \\
\pi_{LL} &= \frac{1}{2}(1 - c_{LL}^2)\nu_L
\end{align*}
\]

Weighting with the respective population proportions gives the following first derivatives with respect to the co-insurance rates.

\[
\begin{align*}
\frac{\partial \pi_{\text{tot}}}{\partial c_{HH}} &= -\alpha_{HH}c_{HH}\nu_H, \quad \frac{\partial \pi_{\text{tot}}}{\partial c_{LL}} = \alpha_{HH}\Delta \mu - \alpha_{LH}\nu_H c_{LH}, \\
\frac{\partial \pi_{\text{tot}}}{\partial c_{HL}} &= -\alpha_H\Delta \mu + \alpha_H c_{HL}\Delta \nu - \alpha_{HL}c_{HL}\nu_L, \\
\frac{\partial \pi_{\text{tot}}}{\partial c_{LL}} &= (1 - \alpha_{LL})\Delta \mu - \alpha_{LL}c_{LL}\nu_L
\end{align*}
\]

The solution for \(c_{LL}\) is \(c_{LL} = \min\{D_{\frac{1-\alpha_{LL}}{\alpha_{LL}}}, 1\}\). A necessary condition that \(c_{LL} > D_{\frac{x}{1-x}}\) is \(x < 1 - \alpha_{LL}\). Only if \(c_{LL} > D_{\frac{x}{1-x}}\) is there room to separate \(LH\) from \(HL\). Because

\[
\frac{\partial \pi_{\text{tot}}}{\partial c_{HL}} = -\alpha_H\Delta \mu + [\alpha_H(1 - x) - \alpha_{HL}x]\nu_H c_{HL},
\]

total profit is strictly concave in \(c_{HL}\) if and only if \(x \geq \frac{\alpha_H}{1-\alpha_{HL}}\). In that case, the optimal solution for \(c_{HL}\) is \(c_{HL} = \min\{D_{\frac{\alpha_H}{\alpha_H(1-x)-\alpha_{HL}x}}, 1\}\).
By monotonicity, the only possibility for full separation arises when \(c_{HL} = D \frac{\alpha_H (1-x)^2 - \alpha_H x}{\alpha_H} < 1\). It remains then to check whether \(c_{HL} < c_{LL}\). Suppose first that \(c_{LL} = D \frac{1-\alpha_{LL}}{\alpha_{LL}} < 1\). Then,

\[
 c_{HL} < c_{LL} \iff x < \frac{\alpha_H (1 - \alpha_{LL})}{\alpha_H \alpha_{LL} + (1 - \alpha_{LL})^2}.
\]

Because \(\frac{\alpha_H (1-\alpha_{LL})}{\alpha_H \alpha_{LL}+(1-\alpha_{LL})^2} < \frac{\alpha_H}{1-\alpha_{LL}}\), this condition contradicts the assumption that \(x \geq \frac{\alpha_H}{1-\alpha_{LL}}\). Suppose next that \(c_{LL} = 1\). Then,

\[
 c_{HL} < c_{LL} \iff x < \frac{\alpha_H}{1-\alpha_{LL} + D\alpha_H}.
\]

Again, this contradicts the assumption that \(x \geq \frac{\alpha_H}{1-\alpha_{LL}}\). Hence, \(c_{HL} = c_{LL}\), meaning that \(HL\) is pooled with \(LL\).

On the other hand, if total profit is strictly convex in \(c_{HL}\), it pays to move \(c_{HL}\) either down to \(c_{LH}\) or up to \(c_{LL}\). Hence, full separation is never optimal.

\[\blacksquare\]

Proof of proposition 3, part (ii).

Under **Regime EI**, \(c_L^E = D \frac{x \alpha_H}{x - \alpha_H}\), with \(x > \alpha_H = \alpha_{LH} + \alpha_{HH}\). Using the definition of \(\alpha_{LH}\), this condition on \(x\) is equivalent to \(x > \frac{\alpha_H}{\alpha_H} - \frac{\rho}{\alpha_H}\). Therefore,

\[
 \rho > -\alpha_H \left(x - \frac{\alpha_{HH}}{\alpha_H} \right).
\]

(27)

In addition, because \(\rho \leq 0\), a necessary condition on \(x\) is that

\[
 x > \frac{\alpha_{HH}}{\alpha_H}.
\]

(28)

Substituting the co-insurance rates into the covariance formula for the expressions given by (23), and making use of the formulae for \(\alpha_{HL}, \alpha_{LH}\) and \(\alpha_{LL}\) ((17)-(19), enables one to write the covariance between coverage and risk as

\[
 \text{cov} = \frac{\rho + \alpha_{HH} \left(x - \frac{\alpha_{HH}}{\alpha_H} \right)}{\rho + \alpha_H \left(x - \frac{\alpha_{HH}}{\alpha_H} \right)} \alpha_H \left(\Delta_H \right)^2 \frac{x}{\nu_L}.
\]

Consider now Figure 9 in the main text. Let \(D\) be small enough for **Regime EI** to prevail. Given (28), all the terms in the round brackets in
the above expression are positive. From (27), the denominator is positive. Therefore,

\[\text{cov} < 0 \iff \rho < -\alpha_{HH} \left(x - \frac{\alpha_{HH}}{\alpha_H} \right). \]
Figure 1. An indifference curve and an iso-profit line in the (c,P)-space

Figure 2. The indifference curves of HL and LH cross twice
Figure 3. Regime A
Figure 4. Regime M
Figure 5a. Regime BpI

Figure 5b. Regime BpX

Figure 5c. Regime Bf

Figure 6. Regime C
Figure 7. Regime E
Figure 8. Optimal regimes in the \((D,x)\)-space. \(x_{BM}(D)\) and \(x_{CE}(D)\) are explained in the text. \(x^{BP}(D)\) is found by setting the expression for \(c^{BP}_{LL}\) for Regime BpI (see eq (22)) equal to 1.
Figure 9. When profits of Regime E are given by $\hat{\pi}^E$, Regime C is entirely dominated by Regime E.

Figure 10. For (α_H, α_{III})-values inside the solid line area, Regime C ceases to occur when ρ equals 0 (a), -.0333 (b), -.0666 (c). The dashed line area gives all combinations of (α_H, α_{III}) such that for the selected ρ the triplet $(\alpha_H, \alpha_{III}, \rho)$ belongs to A_o.
Figure 11. Optimal coinsurance rates for LH and LL as a function of x

Figure 12. The optimal coinsurance rate for LL as a function of α_{LL}
Figure 13. *A priori* and updated probability of type LL and corresponding coinsurance rates

Figure 14. A full-separation menu under Order 2
Recent titles

CORE Discussion Papers

2011/20. Fred SCHROYEN. Attitudes towards income risk in the presence of quantity constraints.

2011/22. Dimitris KOROBILIS. VAR forecasting using Bayesian variable selection.

2011/23. Marc FLEURBAEY and Stéphane ZUBER. Inequality aversion and separability in social risk evaluation.

2011/27. David DE LA CROIX and Axel GOSERIES. The natalist bias of pollution control.

2011/28. Olivier DURAND-LASSERVE, Axel PIERRU and Yves SMEERS. Effects of the uncertainty about global economic recovery on energy transition and CO\textsubscript{2} price.

2011/30. Nicolas GILLIS and François GLINEUR. Accelerated multiplicative updates and hierarchical algorithms for nonnegative matrix factorization.

2011/32. Paul BELLEFLAMME, Thomas LAMBERT and Armin SCHWENBACHER. Crowdfunding: tapping the right crowd.

2011/33. Joachim GAHUNGU and Yves SMEERS. Optimal time to invest when the price processes are geometric Brownian motions. A tentative based on smooth fit.

2011/34. Joachim GAHUNGU and Yves SMEERS. Sufficient and necessary conditions for perpetual multi-assets exchange options.

2011/35. Miguel A.G. BELMONTE, Gary KOOP and Dimitris KOROBILIS. Hierarchical shrinkage in time-varying parameter models.

2011/37. J. Peter NEARY and Joe THARAKAN. International trade with endogenous mode of competition in general equilibrium.

Recent titles

CORE Discussion Papers - continued

2011/42. Dimitri PAOLINI, Pasquale PISTONE, Giuseppe PULINA and Martin ZAGLER. Tax treaties and the allocation of taxing rights with developing countries.

2011/43. Marc FLEURBAEY and Erik SCHOKKAERT. Behavioral fair social choice.

2011/44. Joachim GAHUNGU and Yves SMEERS. A real options model for electricity capacity expansion.

2011/46. Chiara CANTA. Efficiency, access and the mixed delivery of health care services.

2011/47. Jean J. GABSZEWICZ, Salome GVETADZE and Skerdilajda ZANAJ. Migrations, public goods and taxes.

2011/49. Jean J. GABSZEWICZ, Tanguy VAN YPERSELE and Skerdilajda ZANAJ. Does the seller of a house facing a large number of buyers always decrease its price when its first offer is rejected?

2011/50. Mathieu VAN VYVE. Linear prices for non-convex electricity markets: models and algorithms.

2011/51. Parkash CHANDER and Henry TULKENS. The Kyoto Protocol, the Copenhagen Accord, the Cancun Agreements, and beyond: An economic and game theoretical exploration and interpretation.

2011/54. Filippo L. CALCIANO. Oligopolistic competition with general complementarities.

2011/56. Pau OLIVELLA and Fred SCHROYEN. Multidimensional screening in a monopolistic insurance market.

Books

CORE Lecture Series

R. AMIR (2002), Supermodularity and complementarity in economics.

R. WEISMANTEL (2006), Lectures on mixed nonlinear programming.