Regularity and stability of equilibria in an overlapping generations growth model

Jean-François Mertens¹ Anna Rubinchik²

¹CORE, UCL
²University of Haifa

June 2011, CORE
Consider a small change in (lump sum transfer) policy in an overlapping generations model with production near a balanced growth equilibrium. Can one calculate the response of the equilibrium variables?
The challenges

- Infinite economy
 (Chichilnisky and Zhou (1997), Shannon and Zame (2002))
- Non-Pareto equilibria
- Previously established indeterminacy results
 (Brown and Geanakopolos 1980’s, Kehoe and Levine 1985)
The economy: individuals

- An individual can be born at any time \(x \in \mathbb{R} \).
- Population grows exponentially at rate \(\nu \).
- Individual life span is \([0, 1]=\)time endowment.
- Time-separable life-time utility with intertemporal elasticity \(\sigma \), time preference \(\beta \), and no disutility from labour:

\[
V(c) = \int_{0}^{1} e^{-\beta s}(c(s))^{1-\frac{1}{\sigma}} ds
\]

- Wealth: \(M_x = \int_{0}^{1} p_{x+s} \omega_{x,s} ds + \int_{0}^{1} w_{x+s} \zeta_s ds \).
 - \(w_t \) is the (per unit efficiency) wage rate at time \(t \)
 - \(\zeta \) is life-time productivity
 - \(\omega_{x,s} \) is the consumption endowment at age \(s \)
The economy: production

- Instantaneous production:
 \[Y_t = A K_t^\alpha L_t^{1-\alpha}, \quad 0 < \alpha < 1, \ A > 0 \]

- Efficiency of labour changes by age: \(\zeta(s) \geq 0 \), labour productivity grows exponentially at rate \(\gamma \), so aggregate productive labour available at \(t \) equals:
 \[L_t = N_0 e^{(\gamma+\nu)t} \int \zeta_s e^{-\nu s} ds \]

- Capital \(K_t \) accumulates as \(K_t' = l_t - \delta K_t \)
Equilibrium equations in productive labour units

Notation

\[k_t = \frac{K_t}{L_t}, \text{ etc.}, \quad E_{t,s} = \frac{N_0 e^{\nu (t-s)} \omega_t - s}{L_t}, \quad \Omega_t = \int E_{t,s} ds, \quad R = \gamma + \nu + \delta, \]

The fixed points of \(\Upsilon: (k, E) \mapsto \tilde{k} \), defined as a composition of

- \(k \mapsto y: \ y_t = Ak_t^\alpha \)
- \(k \mapsto f: \ f_t = R - \alpha Ak_t^{\alpha-1} (= \gamma + \nu + \frac{p'_t}{p_t}) \)
- \((y, f, E) \mapsto c \)
- \((y, E, c) \mapsto i: \ i_t = y_t + \Omega_t - c_t \)
- \(i \mapsto \tilde{k}: \ \tilde{k}_t = e^{-Rt} \int_{-\infty}^{t} e^{Rs} i_s ds > 0, \) characterise

Int. Eq.: all equilibria of the general model where \(0 < i_t < y_t \) a.e., provided the solutions satisfy \(0 < i_t < y_t \);

BGE: if \(K_t \) is exponential, all BGE of the general model with \(\omega = 0 \).
A **balanced growth equilibrium** (BGE) is an equilibrium with $E_t = 0$ and k_t constant (and hence i, y, c). It is a **golden rule equilibrium** (GRE) if $\frac{i}{y} = \alpha$.

In a GRE $f = 0$ and $R = \alpha A k_t^{\alpha - 1}$.
There are two types of ‘balanced growth’ equilibria

- Golden Rule
- ‘Non-monetary’ (no aggregate-debt) ones: total net savings of consumers = $p_t K_t$.

Figure: $R = 11$, $\sigma = .5$, $\eta = 2$, $a_\varphi = .2$, $b = .75$. Two equilibria $\forall \alpha$.

Jean-François Mertens, Anna Rubinchik

Regularity and Stability in OLG
Example 2

Figure: $R = 11$, $\sigma = .25$, $\eta = 2$, $a_\phi = .135$, $b = .5$. Two to four equilibria.
Figure: $R = 10, \sigma = .25, \eta = 2.5, a_\varphi = .25, b = .75$. 1 equilibrium $\forall \alpha$.
Example 4

Figure: $R = 15, \sigma = .24, \eta = 1.9, a_\varphi = .24, b = .55$. 1 or 3 equilibria.
Generic Regularity: formulation

Recall an equilibrium \(k \) solves \(F(k, E) \overset{\text{def}}{=} \Upsilon(k, E) - k = 0 \), \(\Upsilon \):

- \(k \mapsto y: \ y_t = A k_t^\alpha \)
- \(k \mapsto f: \ f_t = R - \alpha A k_t^{\alpha-1} \) (\(= \gamma + \nu + \frac{p_t'}{p_t} \))
- \((y, f, E) \mapsto c \)
- \((y, E, c) \mapsto i: \ i_t = y_t + \Omega_t - c_t \)
- \(i \mapsto \tilde{k}: \ \tilde{k}_t = e^{-R t} \int_{-\infty}^{t} e^{Rs} i_s ds > 0. \)

Fix a BGE \(\varpi(0) \). “IFT”:

\[
\varpi'_k(\delta E) = - \left(\frac{\partial F}{\partial k} \right)^{-1} \circ \frac{\partial F}{\partial E}(\delta E)
\]

\(\frac{\partial F}{\partial k} \) is generically invertible (in the set of parameters).
Spectrum of the derivative \((\partial \Upsilon(k, E) / \partial k) \) operator

Figure: BGE of fig. with example 2, \(\alpha Y/I = 3 \)
Spectrum of the derivative $(\partial \Upsilon(k, E)/\partial k)$ operator

Figure: BGE of fig. with example 4, $\alpha Y/I = 1/2$
Definitions

Notation

- $\|E\|_{\infty,1} = \sup_x \int_x^{x+1} \int_0^1 |E_{t,s}| \, ds \, dt$
- $\psi_{\lambda_-,\lambda_+}(z) = e^{\lambda_- z} + e^{\lambda_+ z}$
- $\psi_\Lambda = \psi_{\lambda_-,\lambda_+}$ for a compact interval $\Lambda = [\lambda_-, \lambda_+]$
- $\|k\|_{L^C_\Lambda} = \sup_x \sup_{s,t} \psi_\Lambda(x-t)|k(x; t, s)|$ for a kernel $k(x; t, s)$
- $\Lambda_\epsilon = [\max\{\min\{0, \lambda_- + \epsilon\}, \frac{-1}{\epsilon}\}, (\lambda_+ - \epsilon)^+]$
Solutions of the equilibrium system are locally unique

Theorem ("IFT 1")

For a generic economy, \(\exists \delta > 0 \) and there is an open ball \(B \) of endowment perturbations \(E \) s.t., for any \(BGE \) \(\varpi (0) \), there is \(\forall E \in B \) a unique solution \(\varpi (E) \) with \(\| \varpi_k (E) - \varpi_k (0) \|_\infty \leq \delta \).
Solutions in the neighbourhood of a BGE are regular and stable

Theorem (“IFT 2”)

For an open ball B of endowment perturbations from theorem 1:

$\forall \varepsilon > 0 \exists$ an open ball $B_\varepsilon \subseteq B$ s.t., \exists a compact interval $\Lambda_\varepsilon \subseteq \Lambda$, s.t., on B_ε:

1. $E \mapsto \varpi'(E)$ is Lipschitz from $\|\cdot\|_{\infty,1}$ to $\|\cdot\|_{L^\Lambda_\varepsilon}$ for the normalised values of capital, aggregate consumption, aggregate output, and inflation rate.

2. For the same components of ϖ,

$\exists \kappa : \forall \lambda \in \Lambda_\varepsilon, \|\varpi(E_1) - \varpi(E_2)\|_\infty^\lambda \leq \kappa \|E_1 - E_2\|_{\infty,1}^\lambda$
Illustrating the speed of convergence

\[\lambda_+ \text{ and } \lambda_-; \text{ GRE of Fig. 2.} \]

\[\lambda_+ \text{ and } \lambda_-; \text{ BGE of Fig. 2L.} \]
Equilibria are locally unique

Theorem

For any economy in the generic set of parameters, \(\forall B \in \mathcal{E} \exists \delta > 0 \) and the open ball \(B \) of endowment perturbations where the solution of the equilibrium system is unique, \(\exists \delta_0, \delta_1 > 0, \text{s.t. for any } E \in B \) satisfying

- \(\| \int E \cdot s ds \|_\infty \leq \delta_0 \) and
- \(\operatorname{ess sup}_x \int E_{x+s}^- s ds \leq \delta_1 \),

\(\varpi(E) \) is the unique equilibrium of the \(E \)-perturbed economy s.t. \(\| \varpi_k(E) - \varpi_k(0) \| \leq \delta \) and \(\| \varpi_c(E) - \varpi_c(0) \| \leq \delta \).
Policy analysis in OG models with time as \mathbb{R} is feasible!

- We provide a complete characterization of interior equilibria of a classical OG model.
- We demonstrate generic regularity and stability of the BGE.
- ... and a way to easily compute the equilibrium response!