Flavour Science
Proceedings from XIII Weurman Flavour Research Symposium
Edited by Vicente Ferreira and Ricardo Lopez
CHAPTER 62

Key Odorants of Jura Flor-Sherry Wines: Strong Analogy with Gueuze Beers

Sonia Collin, C. Scholtes, Thomas Claeys Bouuaert and S. Nizet
Earth and Life Institute, Université catholique de Louvain, Unité de Brasserie et des Industries Alimentaires, Louvain-la-Neuve, Belgium

62.1 INTRODUCTION

"Yellow Wines" are produced in the famous Château-Chalon area or in one of three other recognized French AOCs (appellation d'origine contrôlée): Côtes du Jura, Arbois/Arbois-Pupillin, and Etoile [1]. Savagnin is the sole grape used to produce this dry white wine (maturation with S. cerevisiae in a 228-liter oak barrel for 6 years and 3 months). Collin et al. [2] recently described the main odorants of yellow wines. As expected, many oak-related odorants were found in the flavor extracts. The key role of sotolon, the well-known spicy/curry/nut compound, was confirmed. This work also enabled evidence, for the first time, of its ethyl analogue, abhexon. Most probably issuing from oxidation of the grape constituent theaspirane, 4-hydroxy-7,8-dihydro-β-ionone (with a very nice grenadine aroma) and dihydrodehydro-β-ionone (with a pleasant Sauternes descriptor) emerged as two other main odorants at the sniffing port (identified by RI on two columns and by GC-HRMS).

Gueuze, the traditional Belgian sour beer, is a mixture of young and old lambics that have been mixed before bottle refermentation. At least 30% of unmalted wheat is added to the grist. Only aged hops (stored for 1 year or more) can be added to the kettle, where boiling occurs for a very long time, strongly reinforcing oxidation. Lambics will be kept in oak barrels for 1–3 years. Several microorganisms [3], mainly Enterobacteria, Saccharomyces yeasts, lactic acid bacteria, and Brettanomyces, slowly modify the product, leading to very distinctive dry, cidery, and musty flavors, with strong acetic acid and lactic acid aftertastes.
In sensorial analyses, some Gueuze samples evoked the typical aroma of yellow wine [4]. The goal of the present work was therefore to quantify the above described oxidation-derived compounds, in Gueuze. Two different extraction procedures (XAD 2 to investigate all odorants, and specific extraction for hydrophilic flavors like sotolon) were applied to two beers. GC-olfactometry (the AEDA method) and GC-MS were used to compare them with three yellow wines.

62.2 MATERIALS AND METHODS

62.2.1 Wine Samples

Two wines of 2002 vintage and one wine of 2003 vintage were investigated: Château-Chalon AOC (2002) from Domaine Jean-Claude Crecoz (JCC-2002), and Stephane Tissot from Arbois AOC (ST-2002, ST-2003). Two different Gueuze beers were also analyzed: GB-1/Jacobins and GB-2/Mort Subite Oude Gueuze, from local supermarkets. They were selected for their characteristic oxidation aromas similar to those found in yellow wines [4].

62.2.2 Global Extraction Procedures

Beer samples were extracted in duplicate with an XAD 2 resin. This procedure is described by Lermusieau et al. [5] (2 g of XAD 2 resin was added to 50 mL of beer, followed by elution with 2 × 20 mL diethyl ether). The extract was dried with anhydrous sodium sulfate; 0.5 mL of dodecane (20 mg/L) was added as an external standard (EST), and the mixture was concentrated to 0.5 mL in a Kuderna-Danish at 39°C (total concentration factor = 100, final EST concentration = 20 mg/L).

62.2.3 Sotolon and Abhexon Extraction Procedure

The procedure derived from Blank et al. [6] and Bailly et al. [7] was recently described by Collin et al. (pH sample brought to 11.5; the XAD 2 unretained fraction and 50 mL of resin washing water mixed before adjusting the pH to 3; final extraction three times with 40 mL
dichloromethane [2]). The thus obtained 120 mL fraction was centrifuged either for 10 minutes at 1000 rpm (wine) or for 15 minutes at 2500 rpm (beer). All organic phases were dried with anhydrous sodium sulfate and concentrated, in the presence of hexadecane (EST; spiking with 0.25 mL of 10-mg/L stock solution), to 0.5 mL in a Kuderna-Danish at 45°C (total concentration factor = 100, final EST concentration = 5 mg/L).

62.3 RESULTS

Specific extraction dedicated to hydrophilic compounds allowed us to evidence, for the first time, sotolon in Gueuze (6–8 μg/L, FD = 16) (Table 62.1). These concentrations and dilution factors are, of course, much lower than those found in yellow wines (up to 112 μg/L), but close to the threshold (15 μg/L in wine) [2]. Only traces of abhexon were found (0.3–0.8 μg/L).

Another strong analogy with yellow wines was the presence of two very pleasant sweet aromas, identified as 4-hydroxy-7,8-dihydro-β-ionone and dihydrodehydro-β-ionone. The concentrations of 4-hydroxy-7,8-dihydro-β-ionone were very close to those found in yellow wines (Table 62.1). Collin et al. [2] showed that these molecules issue from theaspirane oxidation. Theaspirane was described for the first time in hops by Daenen et al. [8], who found theaspirane A and B glycosides. Theaspirane or its glycosilated precursors are suspected to be oxidized and hydrolyzed during hop storage, wort boiling, and oak-ageing, allowing the occurrence of these unreduced carbonyles in Gueuzes.

Because of the long barrel ageing, many oak-related odors previously evidenced in yellow wines were found, at least by GC-O, in the XAD 2 flavor extracts from Gueuzes (Furaneol®, homofuraneol, guaiacol, eugenol, vanillin …; Table 62.2).

Also to be emphasized is the key role of 4-ethylguaiacol (>400 μg/kg in Gueuze beers; threshold value around 20 μg/kg). It is most probably generated in Gueuze beers via metabolism of Brettanomyces (reduction of 4-vinylguaiacol derived from malt and wheat ferulic acid decarboxylation). Isovaleric acid is another compound shared by Gueuzes and yellow wines. It is usually described as oak-derived in the wine literature, but in Gueuzes it might also arise from the degradation of hop bitter acids.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1068</td>
<td>2213</td>
<td>Sotolon</td>
<td>16</td>
<td>6</td>
<td>16</td>
<td>6</td>
<td>512</td>
<td>387</td>
<td>256</td>
<td>112</td>
<td>1024</td>
<td>255</td>
<td>Curry</td>
</tr>
<tr>
<td>1150</td>
<td>2304</td>
<td>Abhexon</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0.5</td>
<td>64</td>
<td>74</td>
<td>64</td>
<td>31</td>
<td>32</td>
<td>256</td>
<td>Curry</td>
</tr>
<tr>
<td>1373</td>
<td>1698</td>
<td>4-Hydroxy-7, 8-dihydro-β-ionone</td>
<td>256</td>
<td>7</td>
<td>1024</td>
<td>10</td>
<td>1024</td>
<td>8</td>
<td>256</td>
<td>2</td>
<td>64</td>
<td>0.6</td>
<td>Grenadine</td>
</tr>
<tr>
<td>1419</td>
<td>1783</td>
<td>Dihydrodehydro-β-ionone</td>
<td>4</td>
<td>0.2</td>
<td>64</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>Sauternes</td>
</tr>
</tbody>
</table>

Data from GC-O (AEDA) and GC-MS, applied on both types of extracts (XAD 2 for all compounds except sotolon and abhexon quantified in the hydrophilic extracts).
<table>
<thead>
<tr>
<th>RI</th>
<th>FFAP</th>
<th>Compound</th>
<th>GB-1</th>
<th>GB-2</th>
<th>JCC-2002</th>
<th>ST-2002</th>
<th>ST-2003</th>
<th>Odor</th>
</tr>
</thead>
<tbody>
<tr>
<td>808</td>
<td>1659</td>
<td>Isovaleric acid®</td>
<td>≤256</td>
<td>1000</td>
<td>≤256</td>
<td>1300</td>
<td>128</td>
<td>117</td>
</tr>
<tr>
<td>1025</td>
<td>1992</td>
<td>Furaneol®</td>
<td>≤256</td>
<td>ud</td>
<td>≤256</td>
<td>ud</td>
<td>64</td>
<td>ud</td>
</tr>
<tr>
<td>1063</td>
<td>1873</td>
<td>Guaiacol</td>
<td>≤256</td>
<td>ud</td>
<td>≤256</td>
<td>ud</td>
<td>16</td>
<td>ud</td>
</tr>
<tr>
<td>1104</td>
<td>2083</td>
<td>Homofuraneol</td>
<td>≤256</td>
<td>ud</td>
<td>≤256</td>
<td>ud</td>
<td>256</td>
<td>ud</td>
</tr>
<tr>
<td>1257</td>
<td>2032</td>
<td>4-Ethylguaiacol</td>
<td>256</td>
<td>413</td>
<td>1024</td>
<td>1072</td>
<td>128</td>
<td>157</td>
</tr>
<tr>
<td>1281</td>
<td>1968</td>
<td>cis-β-Methyl-octactalone</td>
<td>≤256</td>
<td>ud</td>
<td>≤256</td>
<td>90</td>
<td>256</td>
<td>118</td>
</tr>
<tr>
<td>1286</td>
<td>2192</td>
<td>4-Vinylguaiacol</td>
<td>≤256</td>
<td>192</td>
<td>≤256</td>
<td>39</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>1337</td>
<td>1835</td>
<td>Eugenol</td>
<td>≤256</td>
<td>ud</td>
<td>≤256</td>
<td>ud</td>
<td>2</td>
<td>63</td>
</tr>
<tr>
<td>1360</td>
<td>2555</td>
<td>Vanillin</td>
<td>≤256</td>
<td>ud</td>
<td>≤256</td>
<td>ud</td>
<td>32</td>
<td>56</td>
</tr>
</tbody>
</table>

Data from GC-O (AEDA) and GC-MS, applied on global XAD 2 extract. ud-undetected.
62.4 CONCLUSIONS

Sotolon, abhexon, dihydrodehydro-β-ionone, and 4-hydroxy-7,8-dihydro-β-ionone coexist in Gueuze beers and yellow wines, thus justifying some sensorial analogies mentioned in the literature [4]. Isovaleric acid, 4-ethylguaiacol, and several oak-derived odorants were also evidenced in both matrixes.

REFERENCES

Recent developments in flavour science including methods, quality control, toxicology and coverage of legal and ethical aspects

Based on presentations from XIII Weurman Flavour Symposium, *Flavour Science* enriches the chemistry-based vision of most flavourists and flavour chemists with powerful inputs from related areas including human physiology, ethology, psychophysics, genetics, bioinformatics and metabolomics. Organized by topic, the 124 chapters are presented in seven sections providing both broad coverage and topic specific insights.

Section 1: Advances in Sensory Science/psychophysics; Section 2: Effects, Meaning And Role Of Flavour on Nature; Section 3: Flavour systems; Section 4: Instrumental aspects and other tools of the trade; Section 5: Modeling sensory perception; Section 6: Physiology of flavour perception; Section 7: Practical and industrial aspects

The Weurman Flavour Symposium has long been regarded as the premier professional meeting focused on the science of flavour. Congregating every three years, the Weurman Flavour Symposium has become one of the most important international meetings for reporting recent discoveries in flavour sciences, while keeping flavour chemistry at the core.

Ideal for all flavour scientists, food chemists, sensory scientists, as well as enologists.

Key features

- Includes application of the latest information on the physiology, chemistry and measurement of flavour
- Explores emerging trends and industry developments for new flavour use
- Offers information to enhance the quality of new food products and improve existing products