Formation of flavor, color and reducing power in caramel malts

Sem Vandecan
Chair De Clerck
13 September 2012
Overview

- Introduction
- Experimental
- Sacharification process
- Caramelisation process
- Conclusion
Barley

Barley (Hordeum vulgare L.) (Briggs, 1998)
Pilsner malt

Steeping

Germinating

Kilning
Specialty malts

• Differs from pilsner malt
 – Raw materials
 – Altered process parameters
 – Altered drying process
Specialty malts

Dark specialty malts

– Altered drying process
Dark specialty malts

BARLEY

STEEPING
GERMINATION
KILNING

PILSNER MALT
COLOR MALT
ROASTER
ROASTED MALT

GREEN MALT
ROASTER
CARAMEL MALT

ROASTER
ROASTED BARLEY
Dark specialty malts

High temperatures:
Nonenzymatic browning reactions

Formation of flavor, color and reducing power
Nonenzymatic Browning

- Caramelisation
- Pyrolysis
- Maillard reaction
 - Reducing sugars + amino components
 - Complex
 - Tempered reaction conditions
Flavor

• Maillard reaction
 – Strecker aldehydes
 – O – heterocycles: caramel
 – N – heterocycles: burnt, bread, earthy
 – S – heterocycles: grainy, popcorn
• Oxidation of fatty acids
 – Linear aldehydes
• Fenolic components
Color

- LMW Chromophores
- HMW Melanoidins
- Maillard reaction
Reducing power

- Prevent – delay oxidative processes
- Fenolic components
- Maillard reaction
- Reductones – melanoidins
- Flavour stability
- Pro-oxidant
Production process caramel malt

Green malt 45% RH

Direct heating

Sacharification
T: 50-80°C t: 0-120’

Caramelisation
T: 100-180°C t: 0-90’

Caramel malt
Sacharification phase

- Ventilation shaft
- Valve
- Roasting drum
- Heating element
- Ventilation shaft
Sacharification phase

- Indirect heating
- High moisture content
- Hydrolysis of starch
 - β-amylase & α-amylase
- Breakdown of proteins
 - Endoproteinases en exopeptidases

PRECURSORS MAILLARD REACTION
Sacharification phase

- Glucose

Lowest concentrations at 50°C and 55°C
Sacharification phase

- Glucose

60°C: highest concentration↑
Sacharification phase

- Glucose

At 80°C: Initial fast↑
Sacharification phase

- Maltose

2 Maxima:
70°C – 45’
60°C – 60’
Sacharification phase

- FAN

Highest values: 55°C

Low formation at 70-80°C
Sacharification phase - Conclusion

- Reducing sugars
 - Maltose: reducing sugar with highest concentration
 - Optimum glucose and maltose: 60°C
 - Linked to involved enzymes

- FAN
 - Formation during come-up
 - Optimal formation: 55°C
 - 70-80°C: no net formation
Caramelisation phase

- Valve
- Ventilation shaft
- Roasting drum
- Heating element
- Ventilation shaft
Caramelisation phase – Extract

- Extract content
 - 100°C-120°C: slight decrease
 - Higher T: Strong decrease
 - Evaporation + insoluble

- Moisture content
 - 100°C: above 5%
 - Decrease with increasing T and t
 - Above 160°C: MC <1%

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Extract content (% m/m dry mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100°C</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>79</td>
</tr>
<tr>
<td>15</td>
<td>79</td>
</tr>
<tr>
<td>20</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>45</td>
<td>77</td>
</tr>
<tr>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>90</td>
<td>78</td>
</tr>
</tbody>
</table>
Caramelisation phase - Color

- Increasing $T \Rightarrow$ increasing colour ($100^\circ\text{C} - 160^\circ\text{C}$)
- Linear 100°C
- Higher T: initial linear increase
- Highest value at 160°C
- 180°C: decrease
Caramelisation - Flavour

- Furaneol – caramel flavour
 - 100°C: increase
 - Higher T: maximum
 - Moisture content
 - <5% => stop net formation
 - Maltol, norfuraneol

- Not linked with color formation
 - = [] , ≠ color
 - Designer malts
Caramelisation - Flavour

- 2-ethyl-3,5-dimethylpyrazine
 - Roasted flavour
 - Low TH
 - Tends 2,3,5-trimethylpyrazine & 2,3-diethyl-5-methylpyrazine
 - 180°C: strong increase
 - No clear relation color-flavor
Caramelisation – Reducing power

- Linear increase of both radical scavenging and redox-reducing capacity at 100°C and 120°C
- 140°C => a maximum was reached
- 160°C and 180°C => strong decrease after initial increase

Development of radical-scavenging ability (left) and redox-reducing activity (right) during the malt caramelization phase.
Caramelisation phase - conclusion

- **Temperature and time**
 - Strong influence on all parameters
 - Formation pyrazines: formation at higher temperatures

- **Moisture content**
 - Influence on formation caramel flavours

- **Development of color and flavor components are not coupled**
Formation of flavor, color and reducing power in caramel malts

Sem Vandecan
Chair De Clerck
13 September 2012