α-Hederin Induces Apoptosis, Membrane Permeabilization and Morphologic Changes in Two Cancer Cell Lines Through a Cholesterol-Dependent Mechanism

Abstract

In perspective of reducing the mortality of cancer, there is a high interest in compounds which act on multiple cellular targets and therefore prevent the appearance of cancer resistances. Saponins and α-hederin, an oleanane-type saponin, induce cancer cell death through different pathways, including apoptosis and membrane permeabilization. Unfortunately, the mechanism by which cell death is induced is unknown. We hypothesized that the activity of α-hederin mainly depends on its interaction with membrane cholesterol and therefore investigated the cholesterol and saponin-structure dependency of apoptosis and membrane permeabilization in two malignant monocytic cell lines. Apoptotic cell death and membrane permeabilization were significantly reduced in cholesterol-depleted cells. Permeabilization further depended upon the osidic side chain of α-hederin and led to extracellular calcium influx and nuclear fragmentation, with only the latter being susceptible to caspase inhibitors. Membrane order, measured by laurdan generalized polarization imaging, was neither reduced by α-hederin nor its aglycone hederagenin suggesting that their activity was not related to membrane cholesterol extraction. However, a radical change in morphology, including the disappearance of pseudopodes was observed upon incubation with α-hederin. Our results suggest that the different activities of α-hederin mainly depend on its interaction with membrane cholesterol and consequent pore formation.

Introduction

Cancer is becoming an increasing problem of public health especially in developed countries. The appearance of cancer resistance towards conventional chemotherapy diminishes the chances of successful treatment and is therefore a major challenge in cancer research [1]. A way to prevent chemotherapeutic resistance in cancer cells is to act on multiple targets. Saponins, natural amphiphilic compounds have shown the potential to induce cancer cell death by multiple pathways and to increase the activity towards common chemotherapeutic agents or radiotherapy [2–5]. α-Hederin (kalpanaxsaponin A, Fig. 1S, Supporting Information), an oleanane type saponin extracted from Hedera helix, showed a promising activity in vivo against colon and lung cancer [5]. It has been shown that α-hederin possesses a selective cytotoxic activity towards cancer cells most probably by activating on apoptotic pathways via cytosolic increase of reactive oxygen species and Ca2+ [6,7]. We recently showed that α-hederin and its aglycone hederagenin (Fig. 15, Supporting Information) were able to induce pore formation in liposomal systems in a cholesterol dependent manner [8]. Because cholesterol plays a critical role for both the activity on cancer cells and hemolysis by saponins [9], the characterization of the interaction between α-hederin and cholesterol in cell

Key words
- saponin
- triterpenic acid
- apoptosis
- membrane permeabilization
- cholesterol

Acknowledgments

This work is supported by the FB30 (University of Kenny) and MC (University of Louvain) institutes.

Abbreviations

AO/EB: acridine orange/ethidium bromide
BCA: bicinchonic acid
BSA: bovine serum albumin
DAPI: 4',6-diamidino-2-phenylindole
EGTA: ethylene glycol-bis(β-aminoethyl ether)-N,N,N,N-tetraacetic acid
FCS: fetal calf serum
MβCD: methyl-β-cyclodextrin
SDS: sodium dodecyl sulfate

Supporting information available online at http://www.thieme-connect.de/products

Received
March 18, 2016
Revised
July 21, 2016
Accepted
August 4, 2016

Bibliography

DOI http://dx.doi.org/10.1055/s-0042-114780
Published online August 30, 2016

Correspondence
Prof. Dr. Marie-Paule Mingeot-Leclercq
UCL B1.73.05
Université catholique de Louvain – Louvain Drug Research Institute
Cellular and Molecular Pharmacology – Pharmacognosy
Avenue E. Mounier 73
B-1200 Bruxelles
Belgium
Phone: +32 2764 7374
marie-paule.mingeot@uclouvain.be

Joseph H. Lorent1,2, Catherine Léonard1, Marthe Abouzi1, Farida Akabi1, Joëlle Quetin-Leclercq2,
Marie-Paule Mingeot-Leclercq1
1Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Bruxelles, Belgium
2Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Bruxelles, Belgium

Authors

Affiliations

© Georg Thieme Verlag KG Stuttgart · New York · ISSN 0032-0943
membranes is a key for the understanding of the mechanisms involved in saponin induced cell death. The interaction of α-hederin with membranous cholesterol could also have repercussions on the chemotherapeutic resistance of cancer cells since its regulatory function on the membrane order has been put into relationship with the activity of drug expelling channels [10]. However, several saponins changed the lipid order in cell membranes but no consistency was observed among those compounds regarding an increase or decrease of membrane fluidity or whether this change was cholesterol related or not [11, 12]. Interestingly, ginsenoside Rg3 induced changes in the membrane order responsible for a reduction of chemotherapeutic resistance in multidrug resistant cancer cells [13]. Hence, the activity of saponins and α-hederin might depend on their interaction with cholesterol in the plasma membrane. We therefore decided to analyze the importance of cholesterol in α-hederin induced cell death in cancer cells and the effects of the saponin on plasma membrane integrity and order. As a model, we used two monocytic cell lines depleted or not in cholesterol: U937, a cholesterol auxotroph cell line [14] and THP-1 cells, able to synthesize their own cholesterol [15]. In addition, we established the importance of the sugar moiety for those effects, by comparing the effect of α-hederin with that obtained with its aglycone, hederagenin.

Results

MβCD was very efficient in reducing the cholesterol/protein and cholesterol/phospholipid ratio in U937 and THP-1 cells (Table 1). The phospholipid amount was not influenced by MβCD (data not shown), indicating a selective depletion of cholesterol. The measured cholesterol concentrations of non-depleted cells corresponded almost to values reported in literature [16,17]. Cell death was rapidly observed in α-hederin treated U937 cells by trypan blue assay. It increased upon α-hederin concentration. At the highest concentration investigated (25 µM; Fig. 1A), α-hederin induced 62 ± 5.2% of cell death after 2 h of incubation. Depletion of cholesterol by MβCD effectively reduced α-hederin induced cell death in U937 cells upon 18 h of incubation (Fig. 1B). These observations agree with those previously obtained on THP-1 cells [8]. SDS, conversely to α-hederin induced cell death preferentially in cholesterol-depleted cells (Fig. 2S, Supporting Information). This confirms that only the saponin toxicity was inhibited by cholesterol depletion.

Monitoring the cholesterol-dependency of α-hederin induced cell death by acridine orange/ethidium bromide staining (Fig. 1C, D) allowed us to follow the permeabilization of the plasma membrane in parallel with changes of the nucleus morphology. The fragmentation of the nucleus is usually regarded as a sign of apoptotic cell death but might also occur to a lesser extent in necrosis [18]. Membrane permeabilization and the subsequent influx of ethidium bromide were induced long before the appearance of nucleus fragmentation. More than 40% of the cells lost their membrane integrity after 4 h of incubation with 20 µM

<table>
<thead>
<tr>
<th></th>
<th>Non-depleted</th>
<th>Depleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>U937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol/proteins</td>
<td>13.13 ± 1.30 µg/mg</td>
<td>4.49** ± 0.24 µg/mg</td>
</tr>
<tr>
<td>Cholesterol/phospholipids</td>
<td>150.90 ± 14.98 µg/µM</td>
<td>40.26** ± 2.16 µg/µM</td>
</tr>
<tr>
<td>THP-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol/proteins</td>
<td>11.29 ± 0.39 µg/mg</td>
<td>6.54** ± 0.72 µg/mg</td>
</tr>
<tr>
<td>Cholesterol/phospholipids</td>
<td>129.93 ± 4.17 µg/µM</td>
<td>60.07*** ± 6.67 µg/µM</td>
</tr>
</tbody>
</table>

Three independent experiments have been performed, Statistical analysis: One-way ANOVA. **p < 0.01. **p < 0.001
of α-hederin in non-depleted cells. Nucleus fragmentation became significant after 18 h of incubation. Depletion of cholesterol reduced the fragmentation of the nucleus. Membrane defects were also reduced in depleted cells (Fig. 1D) which confirmed the results obtained with trypan blue assay (Fig. 1A).

Fragmentation of nuclei was further investigated in a concentration-dependent manner by DAPI assay for 24 and 48 h. Fragmentation increased upon α-hederin concentration in U937 (Fig. 2A, B) and THP-1 cells (Fig. 2C, D). In THP-1, as well as in U937 (not shown), a maximum of fragmentation could be observed at concentrations around 20 µM. In all conditions investigated, depletion of cholesterol reduced the fragmentation of the nuclei. The osidic side chain of α-hederin has been shown to play an important role in the formation of pores in giant unilamellar vesicles (GUV) [19]. We therefore investigated the critical role of sugars in the membrane permeabilization and cell death (Fig. 3).

Hederagenin has the same triterpenoid backbone as α-hederin but lacks the sugar moiety. We compared the effects of α-hederin (Fig. 3A, C) and hederagenin (Fig. 3B, D) on U937 cells using AO/EB assay. Consistently with results shown for the trypan-blue assay (Fig. 1A), α-hederin induced a very rapid cytosolic ethidium bromide influx at higher concentrations (Fig. 3 C). This effect was not observed with hederagenin even at very long incubation periods (Fig. 3 D). Condensation and fragmentation of nuclei was induced very soon after addition of 40 µM of α-hederin but decreased for longer incubation periods. The cells presenting nuclear fragmentation at this concentration systematically presented ethidium bromide influx. The highest effect on fragmentation was observed with 20 µM of α-hederin for 24 and 48 h of incubation (Fig. 3A). Hederagenin only induced fragmentation after 24 h.
48 h at 40 µM which is close to the solubility limit of the compound (Fig. 3B).

Moving on the mechanism involved in cell death and fragmentation of the nucleus by α-hederin and hederagenin, we investigated the role of caspases by preincubating cells with the pan-caspase inhibitor Q-VD-OPh (Fig. 4A, B and Fig. 3S, Supporting Information). After 48 h of incubation with α-hederin and hederagenin, Q-VD-OPh effectively inhibited fragmentation of the nucleus but did not significantly reduce the cytosolic ethidium bromide influx for both compounds. In addition, the proportion of early apoptosis compared to all cells with fragmented nuclei was very low also for shorter incubation periods (Fig. 4A and Fig. 3S (C, D), Supporting Information). Camptothecine induced nuclear fragmentation and cell death was efficiently reduced by Q-VD-OPh especially at shorter incubation times (Fig. 3S, Supporting Information) and agrees with data obtained on HL-60 cells [20]. At 4 h of incubation and 40 µM α-hederin, caspase inhibition by Q-VD-OPh did not reduce the membrane permeabilization, suggesting a caspase independent cell death at high saponin concentrations (Fig. 3S (B), Supporting Information).

Calcium influx in monocytes has been compared for α-hederin, hederagenin and ionomycin. α-Hederin induced calcium influx in a concentration- and time-dependent manner. After 30 min of incubation with α-hederin, no significant calcium influx was observed at 10 µM, but several cells showed a higher intensity ratio of FURA-2 (I340/I380) which reflects a higher intracytosolic Ca²⁺-concentration compared to the control. This was only observed in media containing extracellular Ca²⁺ (Fig. 5A, B). The cytosolic Ca²⁺-influx induced a significant change of the intensity ratio at 15 and 20 µM of α-hederin in Ca²⁺-containing media. Extracellular EGTA reduced effectively the intensity ratio in α-hederin incubated cells suggesting an extracellular influx. The overall intensity of the FURA-2 signal was reduced at 15 and 20 µM, reflecting a leak of the fluorescent marker out of the cells. Interestingly, several cells treated with α-hederin concentrated FURA-2 into spots whereas a homogeneous distribution of the marker was kept in other conditions (Fig. 5A). Biphoton microscopy (insets) revealed that this effect occurred even in the presence of EGTA suggesting it did not exclusively depend on extracellular Ca²⁺. Hederagenin (40 µM) did not induce an increase of the intensity ratio, indicating a lack of cytosolic Ca²⁺-increase.

At 40 µM, α-hederin induced rapid (less than 5 min) intracytosolic calcium influx (Fig. 4S, Supporting Information). The intensity ratio increased from 0.5 for control cells to 1.5 after 5 min (Fig. 4B, inset) of a representative cell for the control and conditions where a significant change has been observed. Panel B represents the intensity ratio of at least 70 cells from two independent experiments for each condition. Blue symbols represent EGTA and red symbols the Ca²⁺-containing condition. Statistical analysis: One way ANOVA has been performed separately for EGTA and Ca²⁺-containing media. *P < 0.05, **P < 0.001 compared to the control.
At a glance, intracytosolic calcium is significantly increased by α-hederin and at high concentrations, FURA-2 leak out is observed suggesting the formation of larger non Ca2+-selective pores even at short incubation times. Hederagenin itself was not able to increase Ca2+-influx at 40 µM and 30 min of incubation.

We further investigated the effect of α-hederin and hederagenin on morphology as well as on membrane order in macrophages. We used laurdan biphoton microscopy to determine generalized polarization (GP) of cell membranes. Laurdan-GP is an indicator of membrane order at the water-membrane interface. Higher GP-values reflect a lower polarity of the microenvironment of the fluorescent probe and can generally be associated with higher lipid packing in the membrane.

The GP of plasma membranes in U937 and THP-1 cells was always higher than the GP of intracellular membranes. This particularity has been shown in other cell lines and might be attributed to the higher content of cholesterol and saturated lipids of the plasma membrane, compared to intracellular organelles [21]. Hence, it permits to distinguish between the plasma membrane and intracellular membrane material (Fig. 6). GP values from the plasma membranes are represented as \(\text{GP}_{\text{high}}\) and all other GP values are represented as \(\text{GP}_{\text{low}}\) (Fig. 5S, Supporting Information).

Membrane morphology of U937 and THP-1 cells was radically changed upon incubation with α-hederin (Fig. 6). After 2 h of incubation with 40 µM, pseudopodes disappeared which gave the impression of a ‘flat’-spherical plasma membrane (Fig. 6A, B). This effect was also observed at 24 h incubation with 20 µM of α-hederin (Fig. 6A). MβCD induced a similar effect which might indicate a cholesterol dependence of this effect. In addition, we observed the formation of plasma membrane blebs with 20 and 40 µM of α-hederin after 24 and 2 h of incubation, respectively. Those changes on the plasma membrane were accompanied by a release of intracellular membrane material to the extracellular media (see arrow) which made the cells resemble ghost cells. The shape of the nucleus was transformed from bilobar to spherical, which was occasionally accompanied by nuclear fragmentation.

In parallel, upon α-hederin incubation, we observed an overall increase of GP values in both cell types but this effect seemed to be more important for \(\text{GP}_{\text{low}}\) and \(\text{GP}_{\text{mean}}\) values (Fig. 5S, Supporting Information). This was most probably due to the fact that the intracellular membrane material was either disintegrated or re-
leased to the membrane exterior. The plasma membrane order (\(GP_{\text{high}}\)) in U937 cells remained unchanged. This was different to THP-1 cells, where plasma membrane order (\(GP_{\text{high}}\)) seemed to increase compared to the control. As a positive control for plasma membrane order reduction (\(GP_{\text{high}}\)), we used 5 mM of MJCD in RPMI media containing 1 mg/mL BSA and exempt of FCS. In those conditions, GP values (low, high and mean) were significantly reduced and generally attributed to the depletion of membrane cholesterol (Fig. 5S, Supporting Information) [22].

Hederagenin did neither have an effect on cell membrane morphology nor on membrane order for at least 24 h of incubation at its solubility limit of 40 \(\mu\)M.

Discussion

In the past, \(\alpha\)-hederin has been shown to induce apoptotic features like DNA fragmentation and caspase dependent cell death. It has been assumed that the saponin would be able to induce apoptotic pathways via activation of specific Ca\(^2+\)-channels and depletion of antioxidant species in the cytoplasm [6, 7]. In addition to this effect, direct pore formation was observed but a link between both activities was so far missing [23].

Through our results it emerges that the main component of \(\alpha\)-hederin induced cell death can be attributed to its membrane permeabilizing activity, especially at high concentrations, which seems to be related to the presence of cholesterol in the membrane. Several results point into this direction: (i) treated cells with fragmented nuclei present mostly a compromised cell membrane and ethidium bromide influx. They might still be seen as “late apoptotic” cells but at 2 h of incubation with 40 \(\mu\)M, the percentage of ethidium bromide influx is already at 75%. (ii) Total cell death is not reduced by general caspase inhibitors at short incubation times, conversely to camptothecin (Fig. 3S, Supporting Information). (iii) Depletion of cholesterol confers resistance towards \(\alpha\)-hederin induced cell death. Pore formation in liposomal membranes by \(\alpha\)-hederin has been shown to be cholesterol dependent [8] and lysis of red blood cells by saponins was explained by a cholesterol dependent mechanism [24]. The depletion of cholesterol in the plasma membrane of cancer cells should hence refer resistance to pore formation. (iv) Cytosolic Ca\(^{2+}\)-influx is concentration- and time-dependent. At 15 and 20 \(\mu\)M, influx depends mainly on extracellular calcium. It has been shown previously that pores formed by \(\alpha\)-hederin in GUV and LUV increased their size through a concentration and time-dependent way [8, 19]. This is also supported by the fact that FURA-2, a larger molecule than Ca\(^{2+}\), only escapes from the cells at high saponin concentrations (Fig. 5S (A), Supporting Information). Calcium influx might also be the trigger for several apoptotic hallmarks as it was proposed previously [6]. Apoposis induction would in this case depend, at least in part, on pore formation by \(\alpha\)-hederin. At 40 \(\mu\)M, \(\alpha\)-hederin induced cytosolic Ca\(^{2+}\)-influx even when no Ca\(^{2+}\) was present in the extracellular media. This means that the saponin is also able to perforate membranes of intracellular calcium stores at high concentration. (v) Cells lose their intracellular organelles upon incubation with high concentrations of \(\alpha\)-hederin. A part of the intracellular membrane material was released to the cell exterior which suggests relatively large pores (Fig. 6). (vi) The direct morphological changes on the plasma membrane as well as the flattening or the formation of blebs might indicate a direct effect on the membrane. Inhibition of pseudopodia formation by \(\alpha\)-hederin and MJCD accounts for a cholesterol-depen-
Due to hemolytic effects [34] might only apply when administered directly into the bloodstream.

At a glance, α-hederin induces cell death via cholesterol dependent pore formation followed by cytosolic Ca²⁺-influx mostly from extracellular media. The pore formation involves the release of intracellular membrane material from the cell. The pore forming activity would not be due to a cholesterol extraction from the membrane but rather due to the formation of cholesterol/saponin aggregates in the membrane which do not involve a general change of membrane order. This effect might further lead to the inhibition of pseudopodia formation. We also show that the caspase-dependent fragmentation of the nucleus is most probably inhibition of pseudopodia formation. We also show that the caspase-dependent fragmentation of the nucleus is most probably due to the increase of cytosolic Ca²⁺ after membrane permeabilization of cancer cells [35].

Material and Methods

Chemicals, biochemicals and cell lines
α-hederin and hederagenin (purity ≥ 98%) were purchased from Extrasynthese. The compounds were dissolved in ethanol. After evaporation of the solvent, the residue was resolubilized in RPMI media containing 0.1% of DMSO in an ultrasonic bath for 5 min. Corresponding controls were used. Cells were purchased from ATCC. RPMI medium was ordered by Life technologies. BCA protein assay, FURA-2 AM, ionomycin (purity > 90%) and Amplex red cholesterol assay kit were purchased from ThermoFisher Scientific. MB, SDS, DAPI, acridine orange and ethidium bromide were ordered from Sigma-Aldrich. All other reagents were ordered from E. Merck AG.

Cell culture, cholesterol depletion and incubation with α-hederin and hederagenin
All our experiments were performed on cells which were freshly defrosted from a stock, that had been established directly after purchasing the cells from ATCC. Cell cultures were never kept longer than 3 weeks in culture. Cells were cultivated in RPMI medium containing 10% FCS in 95% air and 5% CO₂.

For cholesterol depletion, cells (10⁶ cells/mL) were incubated for 2.5 h in RPMI medium containing 1 mg/mL BSA and 5 mM MB. Counting was performed in a Burker chamber. After incubation, cells were washed 3 times with RPMI medium without serum.

At this time, a part of the cells were quantified for their cholesterol, phospholipid and protein contents. For cholesterol and phospholipid quantification, cellular lipids were first extracted [36] and further quantified by Amplex red cholesterol assay and phosphorus assay [37]. Proteins were quantified by the BCA protein assay kit.

For further incubation with α-hederin, hederagenin or SDS, cholesterol-depleted cells were incubated in RPMI media containing 10% FCS.

Determination of cell death
Cell death was quantified by the trypan blue assay using a phase contrast microscope and results were expressed in % of total cells [38].

Determination of cell nucleus fragmentation and integrity of the plasma membrane
We used DAPI assay to determine nuclear fragmentation [39]. A total of 500 cells was counted.

To distinguish between living, dead cells and early and late apoptosis, we used the AO/EB assay [40]. Both stains label the nucleus but only acidine orange can diffuse through an intact plasma membrane. After incubation, cells were harvested and washed in PBS medium. They were then put in contact with the AO/EB (100 µg/mL) solution and observed by fluorescence microscopy. Early apoptotic cells had a fragmented nucleus and presented no EB influx. All the cells showing EB influx were counted as cells with a defect membrane. Cells presenting both EB influx and nucleus fragmentation were considered as late apoptotic. A total of 200 cells were counted.

Determination of extracellular calcium influx by microspectrofluorimetry
U937 cells were loaded with FURA-2 AM for 1 h at 20°C in RPMI medium containing 10% FCS. They were further washed with KREBS-HEPES media (+BSA 1 mg/mL) adjusted at pH = 7.4 and incubated in the same media containing 1.5 mM CaCl₂ or 250 µM EGTA. α-hederin and hederagenin were resuspended in the corresponding buffer solution with 0.1% DMSO. For microscopy, cells were transferred into non coated IBIDI slides and alternatively excited at 340 and 380 nm. Emission fluorescence was monitored at 510 nm using a Deltaascan spectrofluorimeter (Photon Technology International) coupled to a Nikon Diaphot inverted microscope (Fluar 20× objective; numerical aperture, 0.75). Fluorescence intensity was recorded over the surface of each single cell and intracytosolic [Ca²⁺] was evaluated from the ratio of the fluorescence emission intensities excited at both wavelengths. A minimum of 30 cells have been analyzed for each condition.

Biphoton microscopy of laurdan in monocytes
After incubation, cells were washed with RPMI media and labeled with laurdan at 2 µM and 37°C for 30 min in RPMI media (+ 1 mg/mL BSA). They were further washed with PBS at pH = 7.4 and transferred in the same buffer to IBIDI slides. Excitation was done at 780 nm (0.5% intensity) and cells were observed using a C-Apochromat 63×/1.2 water immersion objective. Emission intensity was recorded upon two channels (I₁ = I₄₀₄–₄₅₇ nm and I₂ = 4₆₈₉–₅₂₈ nm) on entire cells. Generalized polarization (GP) was calculated using the formula: GP = (I₁ − G.I₂)/(I₁ + G.I₂). The G-factor (G) is instrument dependent and was determined through a calibration method previously described [41]. Generalized polarization (GP) images (HSV images) were created with a own Matlab routine based on principles previously established [41]. Briefly, all GP-values of an obtained GP-image were fitted to a double Gaussian function. The centre of both functions were represented by two GP values (G₁ and G₂), reflecting approximately the GP-values of the plasma membrane and the intracellular membranes, respectively (see results). GPmean represents the total average of all GP-values in a cell. A total of 15 entire cells was analyzed for each condition.

Supporting information
Structures of α-hederin and hederagenin as well as results and additional data are available as Supporting Information.

Acknowledgements

We thank the laboratory of cell biology for the disposition of their biphoton microscope (LSM 510 NLO, Zeiss) and especially Patrick Van Der Smissen for his skilful help. We also appreciated the
work of Nicolas Tajeddine for the calcium release assays and Marie-Claire Cambier for her help on cell culture. We also thank the Université Catholique de Louvain for the “Bourse du patrimoine” grant which permit part of this work.

Conflict of Interest

The authors declare no conflict of interest.

References

5 Park HJ, Kwon SH, Lee JH, Lee KH, Miyamoto K, Lee KT. Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta Med 2001; 67: 118–121
7 Swamy SM, Huot BT. Intracellular glutathione depletion and reactive oxygen species generation are important in alpha-hederin-induced apoptosis of PBMC cells. Mol Cell Biochem 2003; 245: 127–139