Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord

Anne des Rieux,1 Pauline De Berdt,1 Eduardo Ansorena,1* Bernard Ucakar,1 Damien Jacobs,1 Olivier Schakman,2 Emilie Audouard,3 Caroline Bouzin,4 Dietmar Auhl,5 Teresa Simón-Yarza,6 Olivier Feron,4 Maria J. Blanco-Prieto,6 Peter Carmeliet,7 Christian Bailly,5 Frédéric Clotman,3 Véronique Préat1

1Pharmaceutics and Drug delivery Unit, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
2Laboratory of Cell Physiology, Institute of Neurosciences, Université Catholique de Louvain, 1200 Brussels, Belgium
3Laboratory of Neural Differentiation, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
4Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Pole de Pharmacotherapy, 1200 Brussels, Belgium
5Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter Unit, Université Catholique de Louvain, 1148 Louvain-la-neuve, Belgium
6Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Navarra, Pamplona, Spain
7Department of Oncology, Laboratory of Angiogenesis and Neurovascular Link, VIB—University or Leuven, Vesalius Research Center (VRC), Leuven, Belgium

Received 8 May 2013; revised 17 July 2013; accepted 5 August 2013
Published online 30 August 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.a.34915

Abstract: We hypothesized that vascular endothelial growth factor (VEGF)-containing hydrogels that gelify in situ after injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% Pronova UPMVG MVG alginate, supplemented or not with fibrinogen, were used. The addition of fibrinogen to alginate had no effect on cell proliferation in vitro but supported neurite growth ex vivo. When injected into a rat spinal cord in a hemisection model, alginate supplemented with fibrinogen was well tolerated. The release of VEGF that was incorporated into the hydrogel was influenced by the VEGF formulation [encapsulated in microspheres or in nanoparticles or in solution (free)]. A combination of free VEGF and VEGF-loaded nanoparticles was mixed with alginate:fibrinogen and injected into the lesion of the spinal cord. Four weeks post injection, angiogenesis and neurite growth were increased compared to hydrogel alone. The local delivery of VEGF by injectable alginate:fibrinogen-based hydrogel induced some plasticity in the injured spinal cord involving fiber growth into the lesion site.

Key Words: injectable hydrogel, VEGF delivery, nanoparticles, microparticles, alginate, spinal cord

INTRODUCTION
Injectable hydrogels are particularly interesting because they can adapt to lesions of any shape and can preserve intact tissues. Hydrogels have been used in regenerative medicine, serving as drug depots, bioactive agents delivery vehicles, and materials in which to encapsulate and deliver Additional Supporting Information may be found in the online version of this article.

Anne des Rieux and Frederic Clotman are Research Associates from the FRS-FNRS (Fonds de la Recherche Scientifique, Belgique). Emilie Audouard and Damien Jacobs hold PhDs grant from the FRIA. The authors are recipients of subsidies from the Fonds National de la Recherche Scientifique (FNRS/FRS), from the “Fonds Spéciaux de Recherche” from Université catholique de Louvain and from the Association Belge contre les Maladies Neuro-Musculaires and the Actions de Recherche Concertées (Prof. F. Clotman, no. 10/15–026, Communauté française de Belgique and Académie Louvain), and from the Walloon Region’s Marshall Programme of Excellence (Dr. O. Schakman, DIANE convention). Eduardo Ansorena was a recipient of Brain Back to Brussels and FNRS grants. Dr. D. Auhl was the recipient of Marie-Curie fellowship “SUPRADYN”.

*Present address: Department of Biochemistry and Molecular Biology, University of Navarra, Pamplona, Spain

Correspondence to: A. des Rieux; e-mail: anne.desrieux@ulouvain.be

Contract grant sponsor: FRS, Region Bruxelloise, and UCL for Cell Observer Spinning Disk (Prof. Courtoy, De Duve Institut, UCL)
Contract grant sponsor: The MIRAX acquisition from the Fond National de la Recherche Scientifique, Belgium; contract grant number: 3.4617.08
Contract grant sponsors: Long-term structural funding Methusalem by the Flemish Government and by the Belgian Science Fund (to PC); contract grant numbers: FWO G.0676.09N and AFM 15374

© 2013 WILEY PERIODICALS, INC. 2345
cells. Hydrogels also create a suitable environment for inducing tissue regeneration at the defect/lesion by providing an artificial extracellular matrix (ECM) that can temporarily support cell attachment, proliferation and differentiation. Injectable hydrogels solidify in situ, maintaining cell viability and bioactivity while preventing damage to the surrounding tissue. Injectable matrices require less invasive surgeries, shortening the surgical operation time and reducing the postoperative loss of function, pain, and scar size.

Spinal cord injury (SCI) results primarily from severe mechanical trauma, leading to secondary injuries in addition to immediate axon and neuron destruction and loss of function. Currently, there is no clinical treatment or therapy that can restore lost function. Several hydrogels have been investigated for use in spinal cord regeneration. A recent review by Gilbert et al. lists articles focused on biomaterials used to treat spinal cord injuries. Among them, alginate was used but not as injectable matrices. Alginate has been widely used for drug delivery and cell encapsulation and as an injectable cell transplantation vehicle due to its biocompatibility, low toxicity and relatively low cost.

Its solid, noninjectable form has also been used for spinal cord regeneration. When cojected with calcium in the lesion, alginate can gelify in situ and fill the spinal cord lesion. However, mammalian cells do not possess receptors for alginate, which limits their adhesion and proliferation. This limitation can be overcome by supplementing alginate hydrogels with ECM motifs/molecules that support cellular adhesion, such as laminin, fibronectin, collagen, and RGD sequences, or fibrinogen. Fibrinogen is a natural substrate for tissue remodeling that contains several cell signaling domains, including cell adhesion motifs. Improved locomotor function as well as revascularization and axonal growth have been reported when fibrinogen or fibrin was implanted into injured spinal cords.

The exogenous administration of vascular endothelial growth factor (VEGF) to traumatically injured spinal cords has been recently investigated as a potential therapy for spinal cord regeneration. VEGF is a proangiogenic growth factor that has also been shown to have neuroprotective effects. VEGF has been investigated in models of SCI and stroke, with mixed results. Adverse effects could be due to a suboptimal delivery strategy. Numerous nanomicroformulations have been developed for the sustained release of VEGF, including poly(lactide-co-glycolic acid) (PLGA) microspheres and chitosan nanoparticles.

We hypothesized that local VEGF delivery from injectable hydrogel would stimulate spinal cord regeneration, by enhancing neurite growth around the lesion and/or within the hydrogels. The objectives of the study were then to (i) study the impact of alginate-based hydrogel on cell proliferation, neurite outgrowth and spinal cord tissue and (ii) assess in a rat hemisection model the influence of local VEGF delivery from an in situ gelifying alginate hydrogel on angiogenesis, neurite growth, and functional recovery.

MATERIALS AND METHODS
Preparation of hydrogels
A 0.5% (w/v) alginate [Pronova UPMVG (medium viscosity, 60% of the monomer units are guluronate), FMC BioPolymers, NovaMatrix, Philadelphia, PA] solution was prepared in MilliQ water, incubated with charcoal for 30 min and filter sterilized (MilliexTM, MA). The endotoxin level of NovaMatrix alginites is guaranteed to be below 100 EU/g.

A 50 mM calcium chloride (CaCl2; Sigma Aldrich, Saint Louis, MO) solution was prepared in MilliQ water and sterilized by filtration. Alginate hydrogels were formed by the coinjection of 0.5% alginate and 50 mM calcium chloride solutions.

Fibrinogen was added to alginate (5 mg/mL) based on the hydrogels’ mechanical properties and compatibility with cell proliferation (data not shown). The fibrinogen used was a component of the TisseelTM fibrin sealant kit, kindly provided by Baxter Innovations GmbH, and was reconstituted with the supplied aprotinin solution at 100 mg/mL.

Rheological characterization of hydrogels
Dynamic viscoelastic measurements were performed on a Rheometrics rotational rheometer (Malvern Instrument SA, Orsay, FR). Alginate solutions were loaded into the rheometer between the parallel plates (8 mm diameter) with a gap of 1 mm. Calcium solution was then added and record of the moduli started immediately (1 rad/s and a stress control of 1 Pa). A solvent trap containing water was used to prevent water evaporation. The moduli of the hydrogels without and with fibrinogen were recorded overnight. The final moduli were obtained when a plateau was reached in the measurements.

Cell proliferation assay
NIH-3T3 cells (mouse fibroblast-like cells, CRL-1658) and SH-SY5Y cells (human neuronal-like cells, CRL-2266; ATCC, Manassas, VA) were cultured at 37°C and 5% CO2 in Dulbecco’s modified eagle medium (DMEM) supplemented with 1% sodium pyruvate, 1% penicillin-streptomycin (PES), 1.5 g/L NaHCO3 and 10% fetal bovine serum (FBS). For SH-SY5Y cells, 0.6% nonessential amino acids (Invitrogen, Carlsbad, CA) were added to the above-mentioned medium.

Hydrogels with a volume of 300 μL were formed in 48-well plates and incubated for 60 min at 37°C (n = 5). They were then washed with PBS, after removing calcium chloride solution used to gel the alginate and before to seed the cells to remove potential calcium chloride traces. A total of 30,000 NIH-3T3 cells/gel or 60,000 SH-SY5Y cells/gel were seeded on each gel (NIH-3T3 and SH-SY5Y cell doubling times are 20 and 48 h, respectively). The CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay kit (MTS test; Promega, Leiden, NL) was used following the supplier instructions. A 100 μL sample of the reagent was added to each well along with 200 μL of culture medium, and the cells were incubated for 1 h at 37°C. The absorbance of the supernatants was read at 492 nm. The cells were washed in PBS, and fresh medium was added. The measurements were performed 24, 48, and 72 h after cell seeding.
performed 6 h after seeding (cell adhesion) and on days 3, 7, and 14 (cell proliferation).

Dorsal root ganglion culture

Hydrogels were formed on Organotypic Millicell culture inserts (30 mm diameter) (Merck Millipore, Overijse, BE). Dorsal root ganglion (DRG) from newborn rats (days 0–2; Wistar) were extracted and placed on hydrogels (five DRG/insert) \((n = 10)\). Matrigel (BD Biosciences, Erembodegen, BE) was used as a positive control. Culture medium (DMEM supplemented with 10% FBS, 1% l-glutamine, 1% PEST and 1% nonessential amino acids + 50 ng/mL NGF; BD Biosciences) was added to the basolateral compartment only. The cultures were incubated at 37°C for 48 h before fixation. Light microscopic images of the DRGs cultured on hydrogels were recorded (ApoTome microscope, Zeiss). The number of neurites per explant \((n = 10)\) and the lengths of the longest neurites \((n = 6\) if number of neurites >100) from each explant were measured using Axiosvision software (Zeiss). The data are reported as mean ± standard deviation (SD).

VEGF formulation

VEGF\(_{164}\) was produced and purified as previously described.\(^2^6\) VEGF was encapsulated either in nanoparticles or in microspheres. VEGF was encapsulated in chitosan–dextran sulfate (CS/DS) nanoparticles as previously described.\(^2^4,2^6\) The encapsulation efficiency was 76%, the drug loading was approximately 5 μg VEGF/mg of nanoparticles, and the mean nanoparticle diameter was 300 nm. VEGF was encapsulated in PLGA microspheres using the TROMS techniue\(^2^5\) with an 80% encapsulation efficiency and a loading of 3 μg/mg microspheres. The mean microsphere diameter was 7 μm.

In vitro VEGF release profiles

The influence of the VEGF formulation on its release from alginate:fibrinogen hydrogels was studied in vitro. A 1-μg sample of VEGF\(_{164}\) in its free form, encapsulated in microspheres\(^2^5\) or encapsulated in nanoparticles\(^2^6\) was incorporated into 500 μL of alginate, and hydrogels were formed by the addition of calcium chloride \((n = 3)\). The hydrogels were incubated in PBS + 0.01% sodium azide and 0.5% BSA at 37°C for 1 month. The amount of VEGF released was measured using a sandwich enzyme-linked immunosorbent assay (ELISA; R&D Systems, Oxon, UK) and expressed as a percentage of the released VEGF.

Hydrogel injection into a rat hemisection model of spinal cord

The animal experiments were approved by the ethical committee for animal care of the health science sector of Université catholique de Louvain. Female Long Evans rats (Janvier; Saint Berthevin, FR, 180–200 g) were anesthetized using a rodent anesthesia System (Equipement Veterinaire Minerve, Esternay, FR) with vaporized isoflurane (Isoba, Schering-Plough Animal Health, Merck Animal Health, Boxmeer, NL) to perform a laminectomy at T9–10 and expose the spinal cord. A lateral hemisection resulting in a gap of 4 mm long up to the midline was created \((n = 12)\).\(^2^7,2^8\) Hydrogels (10 μL) were injected using a double syringe system (Duploject, Baxter Innovation) equipped with a 30 G needle and containing a 0.5% alginate solution on one side and a 50 mM calcium chloride solution on the other side, into the cavity formed by the hemisection, and gelation occurred within 5 min. No gel was injected into the untreated-operated animals (negative control). Then, the muscles were sutured together, and the skin was stapled. Postoperative care included the subcutaneous (s.c.) administration of Baytril (enrofloxacin, 2.5 mg/kg s.c., once per day for 2 weeks), buprenorphine (0.01 mg/kg s.c., twice per day for 3 days), and lactated Ringer’s solution (5 mL/100 g, once per day for 5 days). In addition, the bladder was expressed twice per day until bladder function recovered.

To study their influence on the damaged spinal tissues, alginate hydrogels supplemented with fibrinogen were injected. To evaluate the influence of VEGF on spinal cord recovery, alginate:fibrinogen hydrogels were loaded with 2 μg of VEGF (1 μg free and 1 μg encapsulated in nanoparticles) and injected into the rat spinal cord hemisection model.

Alginate:fibrinogen hydrogel influence on spinal cord tissues

At 4 weeks post injection, the rats were transcardially perfused with 4% phosphate-buffered formaldehyde to fix the tissues.

The injured site was embedded in paraffin and sliced transversally in 12 μm thick sections. Every section was collected and processed for immunohistochemical analysis. Primary antibodies against neurofilaments (mouse anti-Pan neurofilament, 1/1000; Covance, Emeryville, CA), astrocytes (rabbit anti-GFAP, 1/1000; Abcam, Cambridge, UK), infiltrating macrophages (mouse anti-CD68 [ED1], 1/300; Abcam), and T lymphocytes (mouse anti-CD3, 1/300; Thermo Scientific, Fremont, CA) were used in combination with a secondary immunoperoxidase stain (biotinylated anti-mouse IgG (Vector Laboratories, Burlingame, CA, 1:200) or anti-rabbit IgG [VECTASTAIN Elite ABC Kit (Rabbit IgG); Vector Laboratories]). Negative controls were generated by omitting the primary antibodies. Hematoxylin was used as a counterstain. Image acquisition was performed using a MIRAX (Zeiss, Zaventem, BE) or a Nanozoomer (Hamamatsu, Louvain-la-Neuve, BE) slide scanner, allowing the acquisition of entire sections. The level of staining in the injury zone (determined morphologically; 4–6 sections/rat, \(n = 4\)) was quantified using Frida software (The Johns Hopkins University).

VEGF local delivery influence on angiogenesis and spinal cord plasticity

At 4 weeks post injection, the rats were transcardially perfused with 4% phosphate-buffered formaldehyde to fix the tissues. Immunofluorescence was performed on 12 μm sections to quantify the endothelial cells (mouse anti-RECA, 1/75, AbD Serotech, Oxford, UK). An AlexaFluor 488 anti-mouse IgG2a antibody (Invitrogen) was used for the detection of RECA-1. Images were acquired with an AxioImager
fluorescence microscope equipped with an ApoTome module (Zeiss). Quantification was performed on 0.63 mm² pictures taken in the injured zone (35–40 pictures/condition, three rats/condition) using an AxioVision script. Adjacent sections were stained for neuronal cells (βIII tubulin, 1/1000; Covance) and neurite growth (mouse anti-GAP43, 1/10,000; Millipore, Temecula, CA). An AlexaFluor 488 anti-mouse IgG2a secondary antibody (Invitrogen) was used for the detection of GAP43 and an AlexaFluor 568 anti-mouse IgG2a antibody (Invitrogen) was used for the detection of βIII tubulin. Negative controls were generated by omitting the primary antibodies. Images were acquired with an Axiolmager fluorescence microscope equipped with an ApoTome module (Zeiss). Quantification of the injured zone plus 100–130 μm of surrounding tissue (4–6 sections/condition, n = 3) was performed using an AxioVision script.

Assessment of the functional recovery of the rats using Catwalk™

The functional recovery of the rats was evaluated using the Catwalk™ test (Catwalk 7; Noldus, Wageningen, the Netherlands; n = 7). Paw print recording allowed analysis of various aspects of walking steps such as the basis of support, the weight support, the length of contact and the sequence regularity of steps. Up to five runs were performed per animal and analysis was performed by blinded experimenters on the fastest uninterrupted run (< 2 s). The rats were trained 2 weeks before surgery, and runs were recorded just before the surgery and once per week for 4 weeks after the surgery. Many parameters were analyzed by the Noldus software and showed the same tendency. Only the weight support intensity of the left hind paw (the side affected by the surgery) was considered due to its relevance to our study. Runs were recorded as early as 1 week postsurgery even though some rats were not able to support their weight because the recovery of weight support was also a relevant parameter in our study. Weight support was defined as the ability of the rat to move with its body lifted from the floor with no belly dragging. Eleven rats/group were trained and recorded.

Statistical analysis

Statistical analyses were performed using PRISM (GraphPad Software, CA). Two-way analysis of variance with post hoc Bonferroni’s multiple comparison tests were performed with a p value between 0.05 and 0.001 (**p < 0.001, and *p < 0.05). Error bars represent the standard error of the mean in all figures.

RESULTS

Selection of alginate concentration based on the hydrogel moduli and injection in SCI

A high-molecular-weight alginate (MVG, >200 kDa) was selected to provide a long residence time. Three alginate concentrations were selected: 1, 0.5, and 0.25% (w/v). Among ECM molecules, Tisseel™ fibrinogen was chosen not only because it has been successfully employed in spinal cord regeneration studies but also because it is part of a FDA-approved product widely used in human surgeries.

To evaluate the suitability of the hydrogel moduli relative to the spinal cord modulus, the influence of alginate concentration and of fibrinogen supplementation on the hydrogels’ mechanical properties was studied. The storage G’ and the loss G” moduli at the end of the gelation process were compared (Table I; Supporting Information 1).

Hydrogels formed from 1% alginate solution shown the highest moduli (G’ = 6040 Pa). Reducing the alginate concentration by a factor two caused the hydrogel moduli to be divided by more than 40 times (G’ = 134 Pa). 0.25% alginate based hydrogel was ultrasoft matter gel (30 Pa). All hydrogels had a predominant elastic behavior with a storage G’ modulus stronger than the loss G” modulus. The addition of fibrinogen did not affect the moduli of the 0.5 and 0.25% hydrogels but the 1% alginate hydrogel moduli were three times lower (G’ = 2560 Pa).

In addition, a preliminary study was performed, injecting 1, 0.5, or 0.25% alginate solutions and a 50 mM calcium chloride solution with a double syringe system in a rat spinal cord hemisection to obtain injectable gels that gelify in situ. The 1% alginate gelified immediately, often clogging the injection system, making the injection difficult. 4 weeks post injection, the rats were euthanized and the spinal cords stained for neurofilaments. The 1% alginate hydrogel was too dense to allow any cell infiltration and formed a compact mass at the injection site (Supporting Information 2). The 0.5 and 0.25% alginate hydrogel-injected lesions were filled with cells. Residues of the 0.5% alginate hydrogel were detected in the lesion, whereas none were seen for the 0.25% alginate hydrogel (Supporting Information 2).

A 0.5% (w/v) solution was then preferred to 1 and 0.25% alginate solutions because the 1% alginate solution was too viscous to be injected easily and did not allow cell infiltration and the 0.25% hydrogel was too soft and had almost disappeared 1 month post injection.

Hydrogel cytocompatibility

The influence of the hydrogel composition on cellular adhesion (6 h after seeding) and cell proliferation (between 3 and 14 days) was studied using two different cell types,
mouse fibroblast-like cells (NIH-3T3 cells) and human neuronal-like cells (SH-SY5Y cells).

The levels of cell adhesion after 6 h and proliferation after 3 days on alginate were the same regardless of the cell type and hydrogel composition (Fig. 1). 1 and 2 weeks after seeding, NIH-3T3 cells grown on alginate proliferated (between a 2.5- and 3.4-fold increase in the OD). No proliferation on alginate was observed for SH-SY5Y cells. Fibrinogen supplementation did not influence cell proliferation. Thus, the \textit{in vitro} release of fibrinogen from alginate hydrogel was evaluated. Most of the fibrinogen (73\%) was released by diffusion after 3 days of incubation (Supporting Information 3).

\textbf{Ex vivo influence of hydrogels on neurite growth from dorsal root ganglia}

To evaluate the ability of hydrogels to support neurite growth from neuronal tissues, \textit{ex vivo} dorsal root ganglia (DRGs) cultures were performed on alginate, with or without fibrinogen. Matrigel was used31 to assess DRG viability for each set of DRG cultures (data not shown).

The hydrogel composition influenced the extent of neurite growth from DRG. Few neurites were observed when DRGs were seeded onto alginate [Fig. 2(a)]. The addition of fibrinogen stimulated neurite growth [Fig. 2(b)]. Significantly more neurites were observed when fibrinogen was added to alginate (Table II). Based on these results, alginate hydrogel was supplemented with fibrinogen for the following \textit{in vivo} study.

\textbf{Influence of alginate:fibrinogen hydrogel on spinal cord tissues after SCI}

The influence of hydrogel composition on the evolution of SCI was evaluated in a rat spinal cord hemisection model. Neurite growth (pan-neurofilament) and the infiltration of astrocytes (GFAP), T lymphocytes (CD3) and macrophages (CD68) (Supporting Information 4) were quantified in the lesions 4 weeks after the injection of alginate supplemented with fibrinogen compared to nontreated-operated animals. Injection of alginate:fibrinogen hydrogel did not significantly impact the spinal cord tissue. It did elicit a CD3 response, although low (three times more CD3 staining; the same level of CD68 staining) compared with the control, probably due to the human origin of the fibrinogen. Alginate:fibrinogen hydrogel did not significantly affect neurofilament, and GFAP stainings (Fig. 3). Then, although the alginate:fibrinogen did not support by itself spinal cord regeneration, it was well tolerated and was thus considered fit to locally deliver VEGF to the spinal cord.

\textbf{Influence of formulation on the VEGF release profile}

The \textit{in vitro} release of VEGF, either in its free form or encapsulated in chitosan nanoparticles or PLGA microspheres, was measured.

Different release profiles were observed for the different VEGF formulations incorporated into alginate (Fig. 4). The VEGF release from nanoparticles was slow but linear and allowed the delivery of a constant amount of VEGF over time (\(\pm 8\%\)/5 days). A total of 45\% of the VEGF encapsulated in microspheres was released within 14 days, and

\textbf{FIGURE 1.} Influence of hydrogel composition on cell adhesion and proliferation. Metabolic activity after seeding on alginate:fibrinogen hydrogel of fibroblast-like (NIH-3T3 cells) and neuronal-like (SH-SY5Y cells) cells (MTS test; OD at 492 nm). ***\(p < 0.001\), \(n = 5\). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

\textbf{FIGURE 2.} Influence of hydrogel composition on \textit{ex vivo} neurite growth. Neurite growth of explanted newborn rat DRGs on alginate, supplemented or not with fibrinogen, was evaluated 48 h after seeding. (a) Alginate and (b) alginate:fibrinogen.
then the release reached a plateau (less than 3%/5 days). Free VEGF was rapidly released (85% after 2 weeks; 18% after 1 h). The burst release was higher for the microspheres (13% after 1 h) than for the nanoparticles (2%). Faster release was expected when free VEGF was incorporated into hydrogels.

Influence of VEGF delivery on spinal cord regeneration

Because VEGF has a neurotrophic effect\(^{16,17,32-34}\) in addition to its well-known angiogenic activity, it may be able to stimulate spinal cord regeneration. The influence of local VEGF delivery on angiogenesis and neurite growth around and in the lesion was studied in a rat spinal cord hemisection model. VEGF was incorporated into alginate:fibrinogen hydrogels and injected into spinal cord lesions. To provide fast VEGF release (within 2 weeks) and VEGF sustained release at the site of SCI, both free VEGF and VEGF nanoparticles were incorporated into alginate:fibrinogen (1 μg VEGF each) before injection. VEGF microspheres were not selected for the in vivo experiment due to a very slow VEGF release.

VEGF delivery stimulated endothelial cell infiltration into the lesion site (Supporting Information 5). Two and four times more staining for endothelial cells was found in lesions injected with VEGF-loaded hydrogels compared to lesions injected with alginate:fibrinogen alone and to untreated-operated animals, respectively (\(p \leq 0.001\); Fig. 5).

In addition to stimulating angiogenesis, local VEGF delivery from alginate:fibrinogen hydrogels supported neurite growth in and around the lesion. Indeed, greater βIII tubulin and GAP43 staining was observed in the lesions of animals injected with VEGF-loaded hydrogels than in the lesions of animals treated with alginate alone and of untreated-operated animals [Fig. 6(a–c)].

Animals implanted with VEGF-loaded hydrogels exhibited 1.25 times (non significant, \(p = 0.1636\)) and 1.4 times (\(p < 0.05\)) more βIII tubulin staining than animals implanted with alginate:fibrinogen alone or control animals, respectively [Fig. 6(d)]. The βIII tubulin staining observed at the lesion could be attributed to neuronal cells, differentiating neurons, dead cells or even to debris that were not cleared at the time of analysis. The staining of growing neurites (GAP43) was significantly higher for VEGF-loaded hydrogels than for hydrogels alone (1.5-fold) and the control [4.4-fold; Fig. 6(e)]. The higher GAP43 immunoreactivity could be attributed to spinal cord plasticity.

Influence of VEGF on rat functional recovery after SCI

The evolution of each rat’s walking pattern was followed over time using Catwalk\(^{\text{TM}}\) to determine whether the observed plasticity would induce some kind of functional improvement.

The injection of VEGF-loaded alginate hydrogels did not improve the functional outcome of rats (Fig. 7). Similar paw intensities were recorded for all conditions. Two weeks post-injury, all the surviving rats were able to support their weight.

DISCUSSION

Our objective was to study the regenerative potential of an injectable system that gelifies in the spinal cord lesion and

![FIGURE 3. Spinal cord reaction to hydrogel injection in a rat spinal cord hemisection model. Alginate, supplemented with fibrinogen, was injected in hemisected rat spinal cord. Spinal cords were retrieved and analyzed 4 weeks later for T lymphocytes (CD3) and macrophages (CD68) infiltration in the lesion zone, as well as for neurites (neurofilaments) and astrocytes (GFAP). The level of staining in the injury zone (4–6 sections/rat, \(n = 4\)) was quantified using Frida software. ***\(p < 0.05\), \(n = 4\). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE II. Influence of Fibrinogen on DRG Explant Neurite Growth

<table>
<thead>
<tr>
<th></th>
<th>Number of Neurites</th>
<th>Length (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginate</td>
<td>3 ± 2.6</td>
<td>372 ± 205</td>
</tr>
<tr>
<td>Alginate:fibrinogen</td>
<td>>100</td>
<td>576 ± 206</td>
</tr>
</tbody>
</table>

Number of neurites per explant was counted (\(n = 10\)), and the lengths of the longest neurites (\(n = 6\) if number of neurites >100) from each explant were measured using Axiovision software (Zeiss). The data are reported as mean ± SD.
delivers VEGF locally to spinal cord injuries. We found that the local delivery of VEGF to the injured spinal cord stimulated angiogenesis and spinal cord plasticity. However, it did not impact the functional recovery of the treated animals.

In this study, we choose an alginate hydrogel that gels in situ when coinjected with a calcium chloride solution to locally deliver VEGF. Injectable hydrogels present several advantages like the prevention of further damages to the injected tissues and the adaptation of the implant to the shape of the defect. We examined the influence of the hydrogel concentration and supplementation with fibrinogen on the hydrogel moduli. G' moduli decreased with alginate concentration in a nonlinear way and fibrinogen addition only influenced the 1% alginate hydrogel modulus. Hydrogel stiffness has been shown to influence neurite growth. Scott et al. observed that neurite growth was significantly more enhanced on hydrogels with a G' modulus of approximately 70 Pa than on hydrogels with a higher modulus (400 and 900 Pa). Additionally, the spinal cord modulus is approximately 200 Pa. Then, the 0.5 and 0.25% alginate hydrogels (130 and 30 Pa, respectively) might be more adapted to spinal cord regeneration than the 1% alginate hydrogels. In addition, the 1% alginate solution gels immediately when in contact with the 50 mM calcium chloride solution and clogs the needle before it is possible to inject it. Four weeks post injection, residues of the 0.5% alginate hydrogel were detected in the lesion, whereas none were seen for the 0.25% alginate hydrogel. Then, a 0.5% (w/v) solution was then preferred to 1 and 0.25% alginate.

Influence of 0.5% alginate hydrogel on cell proliferation and survival was tested in vitro. Although alginites have been widely used in tissue engineering applications, cell proliferation on alginate is controversial. Indeed, it has been reported that attachment-dependent cells are unable to specifically interact with alginate, most likely due to its highly hydrophilic nature. In addition, mammalian cells do not have receptors for alginate, limiting the adhesion of these cells to these hydrogels. However, alginate hydrogels have been shown to support the survival and proliferation of adipose-derived stem cells, but stem cells have been reported to produce their own ECM. In our study, moderate NIH-3T3 cell proliferation and no SH-SY5Y cell proliferation on alginate is controversial. Indeed, it has been reported that attachment-dependent cells are unable to specifically interact with alginate, most likely due to its highly hydrophilic nature. In addition, mammalian cells do not have receptors for alginate, limiting the adhesion of these cells to these hydrogels. However, alginate hydrogels have been shown to support the survival and proliferation of adipose-derived stem cells, but stem cells have been reported to produce their own ECM. In our study, moderate NIH-3T3 cell proliferation and no SH-SY5Y cell proliferation on alginate was observed. It can be hypothesized that the cell origin influences cell adhesion to alginate. Lawson et al. showed that in contrast to rat cells, human cells do not readily attach to or proliferate on alginites. When type I collagen was added no significant improvement in human cell adherence was found, as we observed when alginate was supplemented with fibrinogen. This might have been due, as observed in with fibrinogen, to the fast release of the added protein, limiting its action on cell proliferation over time.

Because our system was intended for injection in neural tissues, the influence of alginate and its supplementation with fibrinogen on neurite growth was assessed ex vivo on DRG cultures. Neurite growth was inexcetant on alginate alone but was stimulated by the addition of fibrinogen. We hypothesized that, unlike the cells that were cultured for the MTS test, no medium was added to the apical compartment of the DGR culture. These results are consistent with the literature showing that alginate per se does not support robust neuronal survival and outgrowth and inhibits the metabolic activity of olfactory ensheathing cells, Schwann cells, and bone marrow-derived mesenchymal stem cells in culture, in addition to inhibiting DRG neurite outgrowth. However, this behavior was improved after enriching alginate with fibronectin or cell adhesive peptides. Recently,
Matyash et al. showed that neurite outgrowth on alginate can be achieved without modification with ECM components by preparing soft hydrogels with substoichiometric concentrations of Ca$^{2+}$, Ba$^{2+}$, or Sr$^{2+}$. Based on these results, alginate hydrogel was supplemented with fibrinogen for the following in vivo study.

Before to be used as a vehicle to deliver VEGF, reaction of spinal cord to alginate:fibrinogen hydrogel injection was evaluated. The 0.5% MVG alginate:fibrinogen hydrogel did not stimulate neurite growth by itself. Only a slight lymphocyte reaction was observed, probably due to the human origin of fibrinogen.

VEGF, like most growth factors, as a short half-life and is sensitive to enzymatic degradation. To ensure efficiency and a substantial amount of VEGF at the lesion site, VEGF was encapsulated in nanoparticles or in microspheres before being incorporated in alginate:fibrinogen hydrogel. The formulation was expected to influence the release kinetic of VEGF, as well as the incorporation in a hydrogel. Burst release was higher for microspheres than nanoparticles, but remained equivalent to the one observed by Formiga et al. when measuring VEGF release from microspheres in suspension. It is probably due to VEGF adsorption at the microsphere surface. Release of free VEGF, as expected was the fastest. VEGF release was slightly slower when the microspheres were incorporated into alginate than when directly incubated in PBS. This difference can be explained by the hindered diffusion of VEGF, interactions between alginate and VEGF, or slower microsphere degradation due to the lower water availability in the hydrogel; most likely, a combination of these factors was involved. The slow release from CS/DS nanoparticles could be explained by VEGF...
and oxygen to the lesion but also facilitating the growth of blood vessels as a physical support for neurite growth.\(^{17}\) The results we obtained were eight daily bolus injection within the first week after injury, cell infiltration. As for the effect of local VEGF delivery on angiogenesis, bringing nutrients and after surgery for 4 weeks (\(n = 7\)). Influence of VEGF-loaded alginate:fibrinogen hydrogel on rat spinal cord tissue, although it did not act directly on spinal cord regeneration. This hydrogel was then selected to deliver VEGF to injured spinal cords. Free VEGF and VEGF-loaded nanoparticles were incorporated into alginate hydrogels to combine fast release, providing a VEGF boost postinjury, and slower sustained release. This delivery system supported angiogenesis and neurite growth at the lesion site, although no significant functional recovery was observed. Then, the local delivery of VEGF from injectable hydrogels could provide pro-regenerative effects supporting spinal cord plasticity.

ACKNOWLEDGMENTS
The authors thank Dr. Deumens (UCL, IONS) for helpful comments and advice. We are grateful for Dr. H. Gulle's support (Baxter Innovations GmbH Inc., BioSciences Division, Vienna) and for providing the Tisseel™ fibrin products. We thank P. Van der Smissen (De Duve Institute, UCL) for his help and advice with the confocal imaging. M. Mercier and Prof. N. Van Baren (Ludwig Institute for Cancer Research Ltd) are acknowledged for their help with the MIRAX imaging.

REFERENCES

