REMOVABLE SINGULARITIES
FOR THE EQUATION \(\text{div} \, v = 0 \)

LAURENT MOONENS

Abstract. A compact subset \(S \) of \(\mathbb{R}^N \) is removable for the equation \(\text{div} \, v = 0 \) if, by definition, every bounded Borel vectorfield whose distributional divergence vanishes outside \(S \) has a zero distributional divergence in the whole \(\mathbb{R}^N \). Here we establish that a compact subset of \(\mathbb{R}^N \) is removable for the equation \(\text{div} \, v = 0 \) if and only if its \((N-1)\)-dimensional Hausdorff measure vanishes.

1. Preliminaries and notations

Let \(N \geq 2 \) be an integer, and denote by \(\mathbb{R}^N \) the \(N \)-dimensional Euclidean space and by \(e_1, \ldots, e_N \) its usual basis. The usual inner product of \(x, y \in \mathbb{R}^N \) is written by \(x \cdot y \). The Euclidian norm of \(x \in \mathbb{R}^N \) is defined by \(|x| = \sqrt{x \cdot x} \), and we let \(B(x, r) \) (resp. \(B[x, r] \)) represent the open (resp. closed) ball in \(\mathbb{R}^N \) with center \(x \in \mathbb{R}^N \) and radius \(r > 0 \). Whenever \(S \subseteq \mathbb{R}^N \) is given, the notations \(\text{cl} \, S \), \(\text{int} \, S \), \(\partial S \) and \(d(S) \) stand for the closure, interior, boundary and diameter of \(S \) respectively, while \(|S| \) and \(\mathcal{H}^{N-1}(S) \) denote the Lebesgue measure and the \((N-1)\)-dimensional Hausdorff measure of \(S \), respectively. See [6] for details.

The set of all indefinitely differentiable functions with compact support in the open set \(\Omega \subseteq \mathbb{R}^N \) is denoted by \(\mathcal{D}(\Omega) \). The notation \(\mathcal{D}'(\Omega) \) stands for the space of all distributions in \(\Omega \). The support of \(T \in \mathcal{D}'(\Omega) \), denoted \(\text{supp} \, T \), is the set

\[
\mathbb{R}^N \setminus \bigcup \{ U \subseteq \Omega : U \text{ is open}, \langle T, \varphi \rangle = 0 \text{ whenever } \text{supp} \, \varphi \subseteq U \}.
\]

When \(\Omega \) is an open subset of \(\mathbb{R}^N \) and \(1 \leq p < \infty \) is given, one defines \(L^p(\Omega) \) as the space of measurable functions \(u : \Omega \to \mathbb{R} \) for which \(|u|^p \) is Lebesgue-integrable on \(\Omega \). See [5] for details.

Date: August 4, 2006.

The author is an aspirant of the Fonds National de la Recherche Scientifique, Belgium. This work is the result of our final work presented in order to obtain a "Diplome d’études approfondies en mathématiques" and was directed by Pr. Th. De Pauw.
Suppose $\Omega \subseteq \mathbb{R}^N$ is an open set. One says that $u \in L_{loc}^1(\Omega)$ is of bounded variation in Ω if and only if the extended real number

$$V(u, \Omega) = \sup \left\{ \int_{\Omega} u \, \text{div} \, w \, dx : \ w \in C^1_c(\Omega, \mathbb{R}^N), \|w\|_{\infty} \leq 1 \right\},$$

is finite, where $C^1_c(\Omega, \mathbb{R}^N)$ stands for the set of all vectorfields $w : \Omega \to \mathbb{R}^N$, of class C^1 in Ω, with compact support in \mathbb{R}^N and if we let $\|w\|_{\infty} = \max_{\Omega} |w|$ for $w \in C^1_c(\Omega, \mathbb{R}^N)$. The collection of all Lebesgue-integrable functions in Ω which have bounded variation in Ω is denoted $BV(\Omega)$:

$$BV(\Omega) = \left\{ u \in L^1(\Omega) : V(u, \Omega) < \infty \right\}.$$

The perimeter of a set $E \subseteq \mathbb{R}^N$ is the extended real number $P(E) = V(\chi_E, \mathbb{R}^N)$, where χ_E denotes the indicator function of E. In case $P(E)$ is finite, one says that E is a set with finite perimeter in \mathbb{R}^N. The collection of all sets with finite perimeter in \mathbb{R}^N will be denoted by \mathcal{BV}.

On the other hand, take a set $E \subseteq \mathbb{R}^N$ and a point $x \in \mathbb{R}^N$. One says $x \in \mathbb{R}^N$ is a dispersion point of the set $E \subseteq \mathbb{R}^N$ if the limit

$$\lim_{r \to 0} \frac{|E \cap B(x, r)|}{|B(x, r)|},$$

vanishes, while x is called a density point of E is the limit in (1) has the value 1. The set of all density points of E is called the essential interior of E and denoted $\text{int}_e E$, while the essential closure of E is denoted $\text{cl}_e E$ and defined by $\text{cl}_e E = \mathbb{R}^N \setminus \text{int}_e (\mathbb{R}^N \setminus E)$. Finally, the essential boundary of E, written by $\partial_e E$, satisfies $\partial_e E = \text{cl}_e E \setminus \text{int}_e E$. The inclusions $\text{int} E \subseteq \text{int}_e E \subseteq \text{cl}_e E \subseteq \text{cl} E$ are easy to check.

Whenever $E \subseteq \mathbb{R}^N$ is a bounded set with finite perimeter, there exists a vectorfield $\nu_E : \partial_e E \to \mathbb{R}^N$ (called the measure-theoretic exterior normal vector to E) satisfying $|\nu_E(x)| = 1$ for \mathcal{H}^{N-1}-a.e. $x \in \partial_e E$, and for which the Gauss-Green formula

$$\int_E \text{div} \, v \, dx = \int_{\partial_e E} v \cdot \nu_E \, d\mathcal{H}^{N-1},$$

holds whenever $v : \mathbb{R}^N \to \mathbb{R}^N$ is of class C^1 in \mathbb{R}^N. The theory of functions of bounded variation and sets of finite perimeter in \mathbb{R}^N is developed, along with other subjects, in [6].

Rectifiable and purely unrectifiable sets are defined in [7].
2. The setting

The flux of a bounded Borel vectorfield $v : \mathbb{R}^N \to \mathbb{R}^N$ can be thought of as the set function

$$\mathcal{BV} \to \mathbb{R}, \quad E \mapsto \int_{\partial E} v \cdot \nu_E \, d\mathcal{H}^{N-1},$$

(2)

or as the distributional divergence of v,

$$\mathbf{div} v : \mathcal{D}(\mathbb{R}^N) \to \mathbb{R}, \quad \varphi \mapsto -\int_{\mathbb{R}^N} v \cdot \nabla \varphi \, dx.$$

(3)

For our purposes, we shall use the second presentation in order to introduce removable sets.

2.1. Definition. Let $S \subseteq \mathbb{R}^N$ be a compact set. One says that S is removable for the equation $\text{div} \, v = 0$ (or simply removable, in the sequel) if the following condition holds: for every bounded Borel vectorfield $v : \mathbb{R}^N \to \mathbb{R}^N$,

$$\text{supp}(\mathbf{div} \, v) \subseteq S \quad \text{implies} \quad \mathbf{div} \, v \equiv 0.$$

In other words there is no bounded Borel vectorfield $v : \mathbb{R}^N \to \mathbb{R}^N$ whose nonzero distributional divergence vanishes outside a removable set. The main result of this note is the following.

2.2. Theorem. A compact set $S \subseteq \mathbb{R}^N$ is removable for the equation $\text{div} \, v = 0$ if and only if $\mathcal{H}^{N-1}(S) = 0$.

In order to prove the sufficient part of that result don’t need too much material. The following is contained in a work [4] of Th. De Pauw.

3. A sufficient condition for a compact set to be removable

Let

3.1. Lemma. Let $S \subseteq \mathbb{R}^N$ be a compact set satisfying $\mathcal{H}^{N-1}(S) = 0$. There exists a sequence $(\tilde{\chi}_n) \subseteq \mathcal{BV}(\mathbb{R}^N)$ satisfying the following conditions:

a) $\tilde{\chi}_n = 1$ in a neighbourhood of S, for each integer n;
b) $|\text{supp} \, \tilde{\chi}_n| \to 0$ as $n \to \infty$;
c) $V(\tilde{\chi}_n, \mathbb{R}^N) \to 0$ as $n \to \infty$.

Proof. Let \(n \) be a nonnegative integer. Choose a finite collection of open cubes \(C_1^n, \ldots, C_m^n \) with \(d(C_j^n) \leq 1, 1 \leq j \leq m \), for which the following are satisfied:

\[
S \subseteq \bigcup_{j=1}^{m} C_j^n \quad \text{and} \quad \sum_{j=1}^{m} d(C_j^n)^{N-1} \leq \frac{1}{2N(n+1)}.
\]

Let \(U_n = \bigcup_{j=1}^{m} C_j^n \) and \(\tilde{\chi}_n = \chi_{U_n} \). One computes

\[
\text{V}(\tilde{\chi}_n, \mathbb{R}^N) = \mathcal{H}^{N-1}(\partial U_n) \leq \sum_{j=1}^{m} \mathcal{H}^{N-1}(\partial C_j^n),
\]

and

\[
\sum_{j=1}^{m} \mathcal{H}^{N-1}(\partial C_j^n) \leq 2N\sum_{j=1}^{m} d(C_j^n)^{N-1} \leq \frac{1}{n+1}.
\]

On the other hand, one has \(|\text{supp} \tilde{\chi}_n| = |U_n| \to 0 \text{ as } n \to \infty\). The result follows.

Using the regularization theorem for \(BV \) functions (see [10], section 5.3), one obtains the following corollary.

3.2. Corollary. Suppose \(S \subseteq \mathbb{R}^N \) compact and satisfies \(\mathcal{H}^{N-1}(S) = 0 \). There exists a sequence \((\chi_n) \subseteq \mathcal{D}(\mathbb{R}^N)\) satisfying the following conditions:

\(a) \ \chi_n = 1 \text{ in a neighbourhood of } S, \text{ for each } n; \)
\(b) \ |\text{supp} \chi_n| \to 0 \text{ as } n \to \infty; \)
\(c) \int_{\mathbb{R}^N} |\nabla \chi_n| \, dx \to 0 \text{ as } n \to \infty. \)

It is now easy to infer the removability of sets whose \((N-1)\)-dimensional Hausdorff measure vanishes.

3.3. Proposition. Suppose \(S \subseteq \mathbb{R}^N \) compact and satisfies \(\mathcal{H}^{N-1}(S) = 0 \). Then, \(S \) is removable for the equation \(\text{div} \ v = 0 \).

Proof. Let \(v : \mathbb{R}^N \to \mathbb{R}^N \) be a bounded Borel vectorfield whose distributional divergence is supported in \(S \). We have to show that \(\text{div} \ v \) is the zero distribution. For that purpose let \((\chi_n) \subseteq \mathcal{D}(\mathbb{R}^N)\) be a sequence associated to \(S \) by corollary 3.2. For \(\varphi \in \mathcal{D}(\mathbb{R}^N) \), write

\[
\langle \text{div} \ v, \varphi \rangle = \langle \text{div} \ v, \chi_n \varphi \rangle + \langle \text{div} \ v, (1 - \chi_n) \varphi \rangle,
\]

whenever \(n \) is a nonnegative integer. It is clear that one has \(\langle \text{div} \ v, (1 - \chi_n) \varphi \rangle = 0 \) by hypothesis and using the fact that \((1 - \chi_n) \varphi \) is supported outside \(S \). On the other hand, the dominated convergence theorem guarantees that \(\lim_{n \to \infty} \langle \text{div} \ v, \chi_n \varphi \rangle = 0 \).
As we will see the condition $\mathcal{H}^{N-1}(S) = 0$ characterizes the removability property of compact subsets of \mathbb{R}^N.

4. Hausdorff measure of removable sets

4.1. A simple example. The co-area formula ([2], 3.40) yields the following result.

4.1. Proposition. Let $S \subseteq \mathbb{R}^N$ be a compact set, and $v : \mathbb{R}^N \to \mathbb{R}^N$ be a bounded Borel vectorfield which is continuous outside S. The following conditions are equivalent:

a) $\int_{\mathbb{R}^N} v \cdot \nabla \varphi \, dx = 0$ for all $\varphi \in \mathcal{D}(\mathbb{R}^N)$ satisfying $S \cap \text{supp} \, \varphi = \emptyset$;

b) $\int_{\partial E} v \cdot \nu_E \, d\mathcal{H}^{N-1} = 0$ for all bounded $E \in \mathcal{BV}$ with $S \cap \overline{E} = \emptyset$.

Moreover the conditions above imply that the following is satisfied:

c) $\int_{\partial E} v \cdot \nu_E \, d\mathcal{H}^{N-1} = 0$ for all bounded $E \in \mathcal{BV}$ for which $S \cap \partial E$ is closed and satisfies $\mathcal{H}^{N-1}(S \cap \partial E) = 0$.

The following example is selfexplanatory.

4.2. Example. Let $S = \mathbb{R}^{N-1} \times \{0\}$. We will show that S is not removable for the equation $\text{div} \, v = 0$. Let $v : \mathbb{R}^N \to \mathbb{R}^N$ be the bounded Borel vectorfield defined by the formula $v(x) = \text{sgn}(x_N)e_N$. Define $E = [-1/2, 1/2]^N$. Of course, the distributional divergence of v is supported in S. If S were removable for the equation $\text{div} \, v = 0$, then the distributional divergence of v would vanish identically in \mathbb{R}^N. This is not the case since

$$\int_{\partial E} v \cdot \nu_E \, d\mathcal{H}^{N-1} = 2.$$

Similar construction can be made when S is of the form $[a,b]^{N-1} \times \{0\}$ with real numbers $a < b$.

Adapting this construction one shows that a compact sumbanifold M of \mathbb{R}^N is removable for the equation $\text{div} \, v = 0$ if and only if $\mathcal{H}^{N-1}(M) = 0$.

4.2. Removability among rectifiable compact sets. The following result is due to contributions of Denjoy, Ahlfors & Beurling [1] and Coifman, McIntosh & Meyer [3].

4.3. Theorem. Suppose $S \subseteq \mathbb{R}^N$ is a compact $(N-1)$-rectifiable set with $\mathcal{H}^{N-1}(S) > 0$. Then there exists a Lipschitz function $u : \mathbb{R}^N \to \mathbb{R}$, harmonic outside S, but not harmonic in \mathbb{R}^N.

Suppose $S \subseteq \mathbb{R}^N$ is a compact $(N - 1)$-rectifiable set satisfying $\mathcal{H}^{N-1}(S) > 0$. If we let u be a Lipschitz map given by the previous result, and if we define $v = \nabla u$, one obtains a bounded vectorfield, smooth outside S, and whose distributional divergence doesn’t vanish in \mathbb{R}^N while it does outside S. So we have the following.

4.4. Theorem. Suppose $S \subseteq \mathbb{R}^N$ is a compact $(N-1)$-rectifiable set with $\mathcal{H}^{N-1}(S) > 0$. Then S is not removable for the equation $\text{div } v = 0$.

We could hope to have a proof of Theorem 4.4 which is inspired by the construction in Example 4.2 but, at this time, it seems to be a difficult and unsolved problem to construct “by hand” a vectorfield whose distributional divergence vanishes outside a $(N - 1)$-rectifiable compact subset of \mathbb{R}^N with positive $(N - 1)$-dimensional Hausdorff measure, but not in the whole \mathbb{R}^N. Moreover, the proof of Theorem 4.3 relies on abstract Hahn-Banach-type duality arguments.

4.3. Removability among purely unrectifiable compact sets. The following result is due to Th. De Pauw, see [4].

4.5. Theorem. Suppose $S \subseteq \mathbb{R}^N$ is a compact, purely $(N - 1)$-unrectifiable set satisfying $\mathcal{H}^{N-1}(S) > 0$. Then S is not removable for the equation $\text{div } v = 0$.

4.4. The general case. The following construction will allow us to prove that a compact set with positive $(N - 1)$-dimensional Hausdorff measure is not removable for the equation $\text{div } v = 0$.

Let $S \subseteq \mathbb{R}^N$ be compact and satisfy $\mathcal{H}^{N-1}(S) > 0$. Using ([7], 2.10.47) one can find a compact subset S' of S satisfying $0 < \mathcal{H}^{N-1}(S') < \infty$. Now let

$$\alpha = \sup \{ \mathcal{H}^{N-1}(R) : R \subseteq S' \text{ is (N - 1)-rectifiable} \} < \infty,$$

choose an increasing sequence (R_n) of $(N - 1)$-rectifiable subsets of S verifying $\mathcal{H}^{N-1}(R_n) \to \alpha$ as $n \to \infty$ and let $R = \bigcup_{n \in \mathbb{N}} R_n$. The set R is $(N - 1)$-rectifiable, while $U = S' \setminus R$ is purely $(N - 1)$-unrectifiable. Either $\mathcal{H}^{N-1}(U) > 0$ or $\mathcal{H}^{N-1}(R) > 0$ as $S' = R \cup U$. In first case choose (using again [7], 2.10.47) a compact subset K of U with $\mathcal{H}^{N-1}(K) > 0$. Of course K is purely $(N - 1)$-unrectifiable. In the second case a similar argument yields a compact $(N - 1)$-rectifiable subset K of S with $\mathcal{H}^{N-1}(K) > 0$. In both cases, K is not removable for the equation $\text{div } v = 0$ using Theorems 4.4 and 4.5. As a subset of a removable one inherits its removability property, we can state the following result.

4.6. Theorem. Suppose $S \subseteq \mathbb{R}^N$ is a compact set with $\mathcal{H}^{N-1}(S) > 0$. Then S is not removable for the equation $\text{div } v = 0$.

Combining Proposition 3.3 and Theorem 4.6 yields us the following characterisation of removable sets for the equation \(\text{div} \, v = 0 \).

4.7. **Theorem.** A compact set \(S \subseteq \mathbb{R}^N \) is removable for the equation \(\text{div} \, v = 0 \) if and only if \(\mathcal{H}^{N-1}(S) = 0 \).

5. **Some generalization**

A simple observation shows that Theorem 4.4 remains true if the definition of a removable set is replaced by the following.

5.1. **Definition.** A compact set \(S \subseteq \mathbb{R}^N \) is said to be s-removable for the equation \(\text{div} \, v = 0 \) if the following condition holds: for every bounded Borel vectorfield \(v : \mathbb{R}^N \to \mathbb{R}^N \) of class \(C^\infty \) outside \(S \):

\[
\text{supp}(\text{div} \, v) \subseteq S \quad \text{implies} \quad \text{div} \, v \equiv 0.
\]

What about the purely unrectifiable case? In order to show Theorem 4.5 remains true for s-removability, let us recall a result of Th. De Pauw in [4].

5.2. **Lemma.** Suppose \(S \subseteq \mathbb{R}^N \) is a compact purely \((N-1)\)-unrectifiable set satisfying \(0 < \mathcal{H}^{N-1}(S) < \infty \) and \(1 \leq p < \infty \) is a real number. There exists a bounded Borel vectorfield \(w : \mathbb{R}^N \to \mathbb{R}^N \) satisfying the following conditions:

a) \(w \) is of class \(C^\infty \) outside \(S \),

b) \(\text{div} \, w \in L^p(\mathbb{R}^N) \),

c) there is a \(\varphi_* \in \mathcal{D}(\mathbb{R}^N) \) such that

\[
\int_{\mathbb{R}^N} \varphi_* \text{div} \, w \, dx \neq -\int_{\mathbb{R}^N} w \cdot \nabla \varphi_* \, dx \quad .
\] (4)

Let \(S \) satisfy the hypothesis of previous Lemma, choose a real number \(N < p < \infty \) and let \(w \) and \(\varphi_* \) be associated with \(S \) and \(p \) by the previous Lemma. Remark that calling \(u \) a solution of the Poisson equation \(\Delta u = \text{div} \, w \) and defining \(v = w - \nabla u \) one obtains a bounded Borel vectorfield of class \(C^\infty \) outside \(S \), continuous in \(\mathbb{R}^N \) (see [8], 4.2). As \(S \) is a set with finite \((N-1)\)-dimensional Hausdorff measure, the generalised integration by parts formula ([9], 2.10) guarantees the equalities

\[
\int_{\mathbb{R}^N} \varphi_* \text{div} \, w \, dx = \int_{\mathbb{R}^N} \varphi_* \text{div} \, \nabla u \, dx = -\int_{\mathbb{R}^N} \nabla u \cdot \nabla \varphi_* \, dx \quad ,
\]

are satisfied. Using (4), it yields

\[
\int_{\mathbb{R}^N} v \cdot \nabla \varphi_* \, dx \neq 0 \quad ,
\]
and so $\text{div} \, v$ is not the zero distribution. But one has $\langle \text{div} \, v, \varphi \rangle = 0$ whenever φ is supported in $\mathbb{R}^N \setminus S$ using the integration by parts formula. With the previous computation, using the construction of section 4.4 and Proposition 3, one obtains the following generalisation of Theorem 4.7.

5.3. **Theorem.** A compact set $S \subseteq \mathbb{R}^N$ is s-removable for the equation $\text{div} \, v = 0$ if and only if $\mathcal{H}^{N-1}(S) = 0$.

References

E-mail address: moonens@math.ucl.ac.be

Université catholique de Louvain, Département de mathématiques, Chemin du cyclotron, 2, B-1348 Louvain-la-Neuve, Belgique