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Abstract

We discuss nonparametric tests for parametric specifications of regression quan-

tiles. The test is based on the comparison of parametric and nonparametric fits of

these quantiles. The nonparametric fit is a Nadaraya-Watson quantile smoothing

estimator.

An asymptotic treatment of the test statistic requires the development of new

mathematical arguments. An approach that makes only use of plugging in a Ba-

hadur expansion of the nonparametric estimator is not satisfactory. It requires too

strong conditions on the dimension and the choice of the bandwidth.

Our alternative mathematical approach requires the calculation of moments of

Bahadur expansions of Nadaraya-Watson quantile regression estimators. This calcu-

lation is done by inverting the problem and application of higher order Edgeworth
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expansions. The moments allow estimation bounds for the accuracy of Bahadur

expansions for integrals of kernel quantile estimators.

Another application of our method gives asymptotic results for the estimation

of weighted averages of regression quantiles.
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1 Introduction

Consider a data set of n i.i.d. tuples (Xi, Yi), where Yi is a one-dimensional response

variable and Xi is a d-dimensional covariate. For 0 < α < 1 we denote the conditional

α-quantile of Yi given Xi = x by mα(x). Thus we can write

Yi = mα(Xi) + εi,α (i = 1, . . . , n), (1)

with error variables εi,α that fullfill qα(εi,α|Xi) = 0. Here, qα(εi,α|Xi) is the α-quantile of

the conditional distribution of εi,α given Xi. Consider the null hypothesis

H0 : For all α ∈ A there exists a θ(α) ∈ Θ, such that : mα = mα,θ(α), (2)

where {mα,θ : θ ∈ Θ} is a parametric class of regression quantiles, Θ is a compact subset

of IRk and A ⊂ (0, 1). The set A can be a singleton A = {α}, but can also be a (closed)

subset of (0, 1) if a set of quantile functions is checked.

In this paper we aim at studying a test statistic for H0, and to study its asymptotic

properties under the null and the alternative. We will see that this problem is an example

of a quantile model where the asymptotics cannot be developed by standard tools of

quantile regression. In particular, a direct application of Bahadur expansions requires

assumptions that are too restrictive.
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Our test is an omnibus test that has power against all types of alternatives. It is

based on the comparison of a kernel quantile estimator with the parametric fit. The

test statistic is a weighted L2-distance between the nonparametric and the parametric

estimator. Similar tests have been used in a series of papers for mean regression. Early

references are Härdle and Mammen (1993), González-Manteiga and Cao-Abad (1993),

Hjellvik, Yao and Tjøstheim (1998), Zheng (1996) and Fan, Zhang and Zhang (2001).

Furthermore recent references are Dette and Sprekelsen (2004), Kreiss, Neumann and

Yao (2008), Haag (2008), Leucht (2012), Gao and Hong (2008) and Ait-Sahalia, Fan and

Peng (2009). Most of the more recent work concentrates on time series data.

The classical way to carry over results from parametric and nonparametric mean

regression to quantile regression is the use of Bahadur expansions. The main point is

that asymptotically quantile regression is equivalent to weighted mean regression. This

approach has been used in Chaudhuri (1991), Truong (1989), He and Ng (1999), He, Ng

and Portnoy (1998) and more recently in Hoderlein and Mammen (2009), Hong (2003),

Kong, Linton and Xia (2010), Lee and Lee (2008), El Ghouch and Van Keilegom (2009)

and Li and Racine (2008). A detailed review of quantile regression can be found in the

book by Koenker (2005). Testing procedures in quantile regression were considered in

He and Zhu (2003), Koenker and Machado (1999), Koenker and Xiao (2002) and Zheng

(1998).

In this paper we will discuss how results from mean regression carry over to our

case. Whereas elsewhere a first attempt could be based on the application of a Bahadur

expansion, we will see that in our setting the accuracy of a direct application of Bahadur

expansions is too poor. Such an approach would require that the bandwidth h of the

nonparametric kernel regression quantile estimator fulfills that nh3d → ∞ for sample size

n going to ∞. Here, d is the dimension of the covariate. E.g. if one applies a bandwidth

h ∼ n−1/(4+d) that leads to a rate optimal estimation of twice differentiable functions

this assumption would allow only a one-dimensional setting d = 1. Also in the case of

minimax optimal testing with twice differentiable functions under the alternative (see
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Ingster (1993) and Guerre and Lavergne (2002)), the optimal bandwidth h ∼ n−2/(8+d)

is only allowed for dimension d = 1. In this paper we develop an asymptotic theory for

L2-type quantile tests that works under the assumption that nh3d/2 → ∞. In the above

examples this allows dimensions d ≤ 7 and d ≤ 3. Furthermore, we will argue that the

assumption nh3d/2 → ∞ is necessary to get the same asymptotics for L2-type quantile

tests as for L2-type mean regression tests. We will shortly outline that our theory can

be used to go beyond the assumption nh3d/2 → ∞ and how the asymptotics of the test

statistics would change in this case. In our approach we will make use of the fact that

Bahadur expansions of kernel quantile estimators are asymptotically independent if they

are calculated at points that differ more than twice the bandwidth h. Thus the variance

of an integral over a Bahadur expansion should be of smaller order than the variance of

the Bahadur expansion at a fixed point. The main technical difficulty that will come up

when applying this idea is the need to calculate moments of the Bahadur expansion. We

will introduce a method for the expansions of such moments that is based on Edgeworth

expansions in a related problem.

The paper is organized as follows. In the next section we will state our main result

on the asymptotics of L2-type quantile tests. We will also introduce some kind of wild

bootstrap procedure adapted to quantile regression and give a theoretical result on its

consistency. Our theory only applies for Nadaraya-Watson type smoothing. We add a

result on tests based on local polynomial smoothing. This result is based on a direct

application of Bahadur expansions and requires the stronger condition nh3d → ∞. The

proofs are postponed to the last three sections.

2 Asymptotic theory

Recall that we are interested in the null hypothesis H0 defined in (2). We suppose that

for all α ∈ A,

mα(·) = mα,θ0(α)(·) + n−1/2h−d/4∆α(·). (3)
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For the case ∆α ≡ 0 the function mα lies on the hypothesis. We suppose that there exists

an estimator θ̂(α) that converges to θ0(α). Hence, on the hypothesis the true value of

θ(α) is equal to θ0(α). On the alternative, θ0(α) may depend on the chosen estimator

θ̂(α).

Let K(u1, . . . , ud) =
∏d

j=1 k(uj), where k is a one-dimensional density function defined

on [−1, 1], and let h = (h1, . . . , hd) be a d-dimensional bandwidth parameter. We assume

that all bandwidths h1, . . . , hd are of the same order. For simplicity of notation we further

assume that they are identical and by abuse of notation we write h = h1 = . . . = hd.

For any 0 < α < 1 and any x in the support RX of X , let Fεα|X(·|x) be the conditional

distribution function of εα = Y −mα(X), given X = x, and let rα,θ(α)(x) be the α-quantile

of Y −mα,θ(α)(X) given that X = x. Define

r̂α(x) = argmin
r

n∑

i=1

K

(
x−Xi

h

)
τα(Yi −mα,θ̂(α)(Xi)− r),

where τα(u) = αu+ − (1− α)u−, u+ = uI(u > 0) and u− = uI(u < 0).

We suppose that A is a closed subinterval of (0, 1). We define the following test

statistic :

T̂A =

∫

A

∫

RX

r̂α(x)
2w(x, α)dxdα, (4)

for some weight function w(x, α). For the case that A contains only one value α we use

T̂α =

∫

RX

r̂α(x)
2w(x)dx (5)

for some weight function w(x). One could also generalize our results to the case that A

is a finite set. To keep notation simple we omit this case in our mathematical analysis.

In order to develop the asymptotic distribution of T̂A and T̂α, we need to work under

the following assumptions. In the formulation of the assumptions and in the proofs we

use the convention that C,C1, C2, ... are generic strictly positive constants that are chosen

large enough, that c, c1, c2, ... are generic strictly positive constants that are chosen small

enough, and that C∗, C∗
1 , C

∗
2 , ... are generic strictly positive constants that are arbitrarily
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chosen. Using this convention we write Ln = (logn)C for a sequence with C > 0 large

enough and L∗
n = (logn)C

∗

for a sequence with an arbitrarily chosen constant C∗ > 0.

All these variable names are used for different constants and sequences, even in the same

equation.

(B1) The support RX of X is a compact convex subset of IRd. The density fX of X is

strictly positive and continuously differentiable on the interior of RX . The condi-

tional density fX|εα+n−1/2h−d/4∆α(X)(x|e) of X given εα + n−1/2h−d/4∆α(X) = e is

uniformly bounded over x, e, n and α for n large enough.

(B2) The cumulative distribution function F (·|x) of the conditional distribution of Y

given X = x is continuously differentiable with respect to x and has a density f(·|x)

that satisfies

f(y|x) > 0,

|f(y′|x′)− f(y|x)| ≤ C(‖x′ − x‖+ |y′ − y|)

for x, x′ ∈ RX and y, y′ ∈ R, where ‖ · ‖ is the Euclidean norm.

(B3) The kernel k is a symmetric, continuously differentiable probability density function

with compact support, [−1, 1], say. It fulfills a Lipschitz condition and it is monotone

strictly increasing on [−1, 0]. It holds that k′(k−1(u)) ≥ min c{uκ, (k(0)− u)κ} for

some κ > 0 where k−1 : [0, k(0)] → [−1, 0] denotes the inverse of k : [−1, 0] →

[0, k(0)]. The bandwidth h satisfies h = o(1) and nh3d/2/Ln → ∞.

(B4) We assume that

sup
x∈RX ,α∈A

|mα,θ̂(α)(x)−mα,θ0(α)(x)− (θ̂(α)− θ0(α))
⊤γα(x)| = OP (n

− 1

2
−c)

for some function γα(x). The functions w(x, α), γα(x) and ∆α(x) are continuous

with respect to α and x. The function w(x) is continuous. For g(x) = w(x, α) and

g(x) = w(x) it holds that |g(x′)−g(x)| ≤ C‖x′−x‖, and |γα(x′)−γα(x)| ≤ C‖x′−x‖δ

for some 0 < δ < 1 and for all x, x′ ∈ RX and all α ∈ A.
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(B5) It holds that supα∈A ‖θ̂(α) − θ0(α)‖ = OP (n
− 1

2
+c). For g(α) = θ0(α) it holds that

‖g(α′)−g(α)‖ ≤ C|α′−α| for α, α′ ∈ A. For g(α) = θ̂(α) this holds with probability

tending to one.

We can now state our first main result.

Theorem 1. Assume (B1)-(B5). Then,

nhd/2T̂A − bh,A
d
→ N(DA, VA),

nhd/2T̂α − bh,α
d
→ N(Dα, Vα),

where

DA =

∫

A

∫

RX

∆α(x)
2w(x, α) dx dα,

bh,A = h−d/2K(2)(0)

∫

A

α(1− α)

∫

RX

w(x, α)

fX(x)f 2
εα|X

(0|x)
dx dα,

VA = 4K(4)(0)

∫

α,β∈A,α<β

α2(1− β)2
∫

RX

w(x, α)w(x, β)

f 2
X(x)f

4
εα|X

(0|x)
dx dα dβ,

Dα =

∫

RX

∆α(x)
2w(x) dx,

bh,α = h−d/2K(2)(0)α(1− α)

∫

RX

w(x)

fX(x)f 2
εα|X

(0|x)
dx,

Vα = 4K(4)(0)α2(1− α)2
∫

RX

w2(x)

f 2
X(x)f

4
εα|X

(0|x)
dx,

and where for any j, K(j)(0) denotes the j-times convolution product of K at 0.

In our theorem we make the assumption that nh3d/2/Ln converges to ∞. This as-

sumption is used in the proof of Lemma 5 in Section 3. For the calculation of the con-

ditional second moment of r̂ we used an Edgeworth expansion that gives an expansion

for the moment with remainder term OP (n
−2h−2d). This term is of order oP (n

−1h−d/2) if

nh3d/2 → ∞. This suffices for the asymptotic result of Theorem 1. If it does not hold that

nh3d/2 → ∞ we get an additional bias term for T̂A and T̂α that is of order O(n−2h−2d).

This would require a higher order expansion in Lemma 5. In particular, we conjecture
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that we then get an asymptotic limit for our test statistic that differs from the limit if

the estimator r̂α is replaced by its Bahadur expansion.

We expect that Theorem 1 cannot be used for an accurate calculation of critical values.

The asymptotic normality result of Theorem 1 is based on the fact that kernel smoothers

are asymptotically independent if they are calculated at points that differ more than 2h.

Thus the convergence is comparable to the convergence of the sum of h−d independent

summands. This would motivate a rate of convergence of order h−d/2. As has been

suggested for other goodness-of-fit tests in the literature, also here a way out is to use

a bootstrap procedure. We will introduce some kind of wild bootstrap for quantiles in

which the Bahadur expansion r̃α of r̂α is resampled. For the definition of r̃α see (7) in

Section 3. For the bootstrap, we define

r̃∗α(x) = −

∑n
i=1K

(
x−Xi

h

)
{I(Ui ≤ α)− α}

∑n
i=1K

(
x−Xi

h

)
f ∗
ε∗α|X

∗(0|Xi)
,

where f ∗
ε∗α|X

∗ is an estimator of fεα|X and Ui are independent random variables with

uniform distribution on [0, 1] that are independent of the sample. The bootstrap test

statistics are defined as:

T̂ ∗
A =

∫

A

∫

RX

r̃∗α(x)
2w(x, α)dx dα

and

T̂ ∗
α =

∫

RX

r̃∗α(x)
2w(x)dx.

For proving the consistency of this bootstrap procedure, we need one more assumption :

(B6) It holds that

sup
α∈A, x∈RX

∣∣f ∗
ε∗α|X

∗(0|x)− fεα|X(0|x)
∣∣ → 0,

in probability.

The next theorem shows the consistency of the above bootstrap approach.
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Theorem 2. Assume (B1)-(B6). Then,

dK(L
∗(nhd/2T̂ ∗

A − bh,A), N(0, VA))
p
→ 0,

dK(L
∗(nhd/2T̂ ∗

α − bh,α), N(0, Vα))
p
→ 0,

where L∗(...) denotes the conditional distribution, given the sample. Furthermore, dK is

the Kolmogorov distance, i.e. the sup norm of the difference between the corresponding

distribution functions.

Theorem 2 remains to hold if we replace (B1)–(B5) by weaker conditions. We do

not pursuit this because we need for consistency of bootstrap that both, Theorem 1 and

Theorem 2, hold.

Our test proposed above is based on local constant smoothing and it checks for the

accuracy of parametric specifications of the regression function. We now shortly discuss

tests based on local polynomial smoothing of order p. We are doing this for two reasons.

First of all it allows for checking the accuracy of estimated derivatives of the regression

function. Second, since this result is based on a direct application of Bahadur expansions,

we will see that this leads to much more restrictive assumptions on the bandwidth than

we had in Theorem 1. We remark that the approach of Theorem 1 cannot be applied for

local polynomials. The reason is that an equation like (11) in Section 3 does not hold

for local polynomials because the local polynomial method fits a local vector instead of a

local scalar.

Define for d-dimensional vectors z and ν,

π(z)⊤b =
∑

ν:|ν|≤p

bν
zν

ν!
,

πh(z)
⊤b =

∑

ν:|ν|≤p

bν
zν

h|ν|ν!
,

with the convention zν =
∏d

j=1 z
νj
j , |ν| =

∑d
j=1 νj and ν! =

∏d
j=1 νj !. We let rp be the

number of elements of Rp = {ν : |ν| ≤ p} and we define an rp-dimensional vector eν† that

has elements 0 for ν 6= ν† and an entry equal to 1 for ν = ν†. Here the elements of the
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vector are ordered according to some listing of the set Rp. Now, the test statistic is based

on the following local polynomial residual quantile estimator:

r̂α(x) = argmin
b

n∑

i=1

K
(x−Xi

h

)
τα(Yi −mα,θ̂(α)(Xi)− πh(Xi − x)⊤b).

Here r̂α(x) is an rp-dimensional vector and for fixed ν†, we put

r̂†α(x) = r̂α,ν†(x).

In analogy to the above definitions, the test for the parametric model is based on one of the

following two test statistics: T̂ †
A =

∫
A

∫
RX

r̂†α(x)
2w(x, α)dx dα or T̂ †

α =
∫
RX

r̂†α(x)
2w(x)dx,

respectively. Note that h−|ν†|r̂†α(x) is an estimator of the ν†-th partial derivative ofmα(x)−

mα,θ0(α)(x). Thus the test checks for the accuracy of the parametric fit of the ν†-th partial

derivative of mα. Instead of (3) we now assume that

mα(·) = mα,θ0(α)(·) + n−1/2h−d/4−|ν†|∆α(·). (6)

Note that for |ν†| > 0 we get slower rates of convergence for alternatives that are detected

with non trivial power. We conjecture that this difference in power rates disappears if

one considers other classes of alternatives. In particular, for the alternative mα(·) =

mα,θ0(α)(·) + cn∆α(·/h) we expect that the test has nontrivial power for the same rate cn

for all values of |ν†|.

We need the following assumptions for the asymptotic results of our next theorem.

(B7) The kernel k is a probability density function with compact support. It fulfills a

Lipschitz condition and it holds that k(0) > 0. For the bandwidth h we have that

h = hn → 0 and nh3d/Ln → ∞.

(B8) ∆α(x) has a derivative ∆
(ν†)
α (x) with respect to x of order ν† that is continuous in

α and x.

We are now ready to state an asymptotic result regarding the tests based on T̂ †
A and

T̂ †
α, respectively.
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Theorem 3. Assume (B1), (B2), (B4) (B5), (B7), (B8). Then,

nhd/2+2|ν†|T̂ †
A − b†h,A

d
→ N(D†

A, V
†
A),

nhd/2+2|ν†|T̂ †
α − b†h,α

d
→ N(D†

α, V
†
α),

where

D†
A =

∫

A

∫

RX

∆(ν†)
α (x)2w(x, α) dx dα,

b†h,A = h−d/2L(2)(0)

∫

A

α(1− α)

∫

RX

w(x, α)

fX(x)f 2
εα|X

(0|x)
dx dα,

V †
A = 4L(4)(0)

∫

α,β∈A,α<β

α2(1− β)2
∫

RX

w(x, α)w(x, β)

f 2
X(x)f

4
εα|X

(0|x)
dx dα dβ,

D†
α =

∫

RX

∆(ν†)
α (x)2w(x) dx,

b†h,α = h−d/2L(2)(0)α(1− α)

∫

RX

w(x)

fX(x)f 2
εα|X

(0|x)
dx,

V †
α = 4L(4)(0)α2(1− α)2

∫

RX

w2(x)

f 2
X(x)f

4
εα|X

(0|x)
dx,

where the kernel L is defined as L(u) = e⊤ν†
[∫

π(v)π(v)⊤K(v) dv
]−1

π(u)K(u).

3 Proof of Theorem 1

We only prove the statement for T̂A. The asymptotic result for T̂α follows similarly.

We need to introduce a few more notations. With δθ,α(x) = −(θ(α) − θ0(α))
⊤γα(x) +

n−1/2h−d/4∆α(x) and ε∆i,α = εi,α + n−1/2h−d/4∆α(Xi) we put

r̃α(x) = −

∑n
i=1K

(
x−Xi

h

)
{I(ε∆i,α ≤ 0)− α}

∑n
i=1K

(
x−Xi

h

)
fεα|X(0|Xi)

, (7)

r̂α,θ(x) = argmin
r

n∑

i=1

K

(
x−Xi

h

)
τα(εi.α + δθ,α(Xi)− r),

r̂0α(x) = r̂α,θ0(x)

and

r̂⋆α(x) =





r̂0α(x) if |r̂0α(x)| ≤ Ln(nh
d)−1/2

0 otherwise.
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Let also

Wni(x, h) = Kh(x−Xi)/[
∑

j

Kh(x−Xj)],

with Kh(·) = K(·/h)/hd.

If X would be one-dimensional, the support RX would be a compact interval. For

arbitrary j and for k = 1, 2, 3, we can then define

Ijk = [(3j + k − 1)h, (3j + k)h], and I∗jk = [(3j + k − 2)h, (3j + k + 1)h].

The set of indices of the Xi (i = 1, . . . , n) that fall inside the interval I∗jk is denoted by

Njk. We write Njk for the number of elements of Njk. An arbitrary x ∈ RX belongs

to a unique Ijk and we define N (x) = Njk and N(x) = Njk. If the dimension of X is

larger than one, this partition of the support into small intervals can be generalized in an

obvious way.

The proof of Theorem 1 will make use of the following lemmas.

Lemma 1. Suppose that the assumptions of Theorem 1 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣∣r̂α,θ̂(α)(x)
∣∣∣ = OP ((nh

d)−1/2Ln),

sup
α∈A

sup
x∈RX

∣∣∣r̂0α(x)
∣∣∣ = OP ((nh

d)−1/2Ln).

Proof of Lemma 1. As is known for the case where there is no parametric part and

where ∆α ≡ 0, one has that

sup
α∈A

sup
x∈RX

∣∣∣r̂α(x)− r̃α(x)
∣∣∣ = OP ((nh

d)−3/4Ln).

For a proof see Theorem 2 in Guerre and Sabbah (2012). By standard smoothing theory

we have that (still when ∆α ≡ 0)

sup
α∈A

sup
x∈RX

∣∣∣r̃α(x)
∣∣∣ = OP ((nh

d)−1/2Ln). (8)

We can move from this case to r̂0α(x) by adding to the observations terms of order

OP (n
−1/2h−d/4) = OP ((nh

d)−1/2Ln) . In the case of r̂α,θ̂(α)(x) we have to add to the
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observations terms of the order OP (n
− 1

2
+c) + OP (n

−1/2h−d/4) = OP ((nh
d)−1/2Ln). This

changes the local quantiles by at most this amount. This shows the statements of the

lemma.

Lemma 2. Suppose that the assumptions of Theorem 1 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣∣r̂α(x)− r̂0α(x) + (θ̂(α)− θ0(α))
⊤γα(x)

∣∣∣ = OP (n
− 1

2
−c).

Proof of Lemma 2. First note that r̂α(x)+(θ̂(α)−θ0(α))
⊤γα(x) is equal to the quantile

estimator we would obtain when we shift all observations Yi in the window around x by

the amount (θ̂(α)− θ0(α))
⊤γα(x), and hence we need to show that the distance between

this latter estimator (say r̂α,mod(x)) and r̂0α(x) is OP (n
− 1

2
−c) uniformly in α and x.

Next, note that if now in addition we perturb all observations in the window around

x by adding mα,θ̂(α)(Xi) − mα,θ0(α)(Xi) − (θ̂(α) − θ0(α))
⊤γα(Xi), the quantile estimator

r̂α,mod(x) will get perturbed by at most the maximal perturbation of the observations,

which is of the order OP (n
−1/2−c) by Assumption (B4).

After these two perturbations, the quantile estimator is now based on Yi−mα,θ0(α)(Xi)+

(θ̂(α)− θ0(α))
⊤(γα(x)− γα(Xi)) instead of Yi−mα,θ̂(α)(Xi). Finally note that if we apply

one more perturbation by subtracting (θ̂(α) − θ0(α))
⊤(γα(x) − γα(Xi)) for all Xi in the

window around x, the estimator changes by at most OP (n
−1/2+chδ) by Assumption (B5),

and this is OP (n
−1/2−c) for c small enough. The so-obtained estimator equals r̂0α(x), which

shows the statement of the lemma.

Lemma 3. Suppose that the assumptions of Theorem 1 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣∣r̂0α(x)− r̃α(x)
∣∣∣ = OP ((nh

d)−3/4Ln).

Proof of Lemma 3. Write

|r̂0α(x)− r̃α(x)|

≤
1

infx,α fεα|X(0|x)

∣∣∣
n∑

i=1

Wni(x, h)fεα|X(0|Xi)r̂
0
α(x) +

n∑

i=1

Wni(x, h)
(
I(ε∆i,α ≤ 0)− α

)∣∣∣

=
1

infx,α fεα|X(0|x)

∣∣∣
n∑

i=1

Wni(x, h)fεα|X(0|Xi)r̂
0
α(x)− F̂ε∆α |X(r̂

0
α(x)|x) + F̂ε∆α |X(0|x)

∣∣∣

+OP ((nh
d)−1), (9)
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where F̂ε∆α |X(y|x) =
∑

i Wni(x, h)I(ε
∆
i,α ≤ y). The latter equality follows from the fact

that

|F̂ε∆α |X(r̂
0
α(x)|x)− α| ≤ |F̂ε∆α |X(r̂

0
α(x)|x)− F̂ε∆α |X(r̂

0
α(x)− |x)|

= OP ((nh
d)−1).

The following expansion follows from standard kernel smoothing theory, uniformly for

x ∈ RX , α ∈ A, |y| ≤ an and for sequences an with a−1
n = O(nhd) :

F̂ε∆α |X(y|x)− F̂ε∆α |X(0|x)

=
∑

i

Wni(x, h)

∫ y

0

fεα|X(u− n−1/2h−d/4∆α(Xi)|Xi)du+OP ((nh
d)−1/2Lna

1/2
n )

=
∑

i

Wni(x, h)

∫ y

0

fεα|X(u|Xi)du+OP ((nh
d)−1/2Lna

1/2
n ) +OP (n

−1/2h−d/4an)

= y
∑

i

Wni(x, h)fεα|X(0|Xi) +OP ((nh
d)−1/2Lna

1/2
n + a2n) +OP (n

−1/2h−d/4an).

We now apply this bound to an = (nhd)−1/2Ln and y = r̂0α(x), which is possible thanks

to Lemma 1. This combined with (9) shows the statement of the lemma.

For proving Theorem 1, we will make use of the following decomposition, which follows

from Lemma 2 :

T̂A =

∫

A

∫

RX

[
r̂0α(x)− (θ̂(α)− θ0(α))

⊤γα(x)
]2
w(x, α) dx dα+ oP (n

−1h−d/2)

=

∫

A

∫

RX

[
r̂0α(x)

2 − r̂⋆α(x)
2
]
w(x, α) dx dα

+

∫

A

∫

RX

E
{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N(x)

}
w(x, α) dx dα

+

∫

A

∫

RX

[
r̂⋆α(x)

2 − r̃α(x)
2 − E

{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N(x)

}]
w(x, α) dx dα

−2

∫

A

∫

RX

[
(r̂0α(x)− r̃α(x))

{
(θ̂(α)− θ0(α))

⊤γα(x)
}]

w(x, α) dx dα

−2

∫

A

∫

RX

[
r̃α(x)

{
(θ̂(α)− θ0(α))

⊤γα(x)
}]

w(x, α) dx dα

14



+

∫

A

∫

RX

[
(θ̂(α)− θ0(α))

⊤γα(x)
]2
w(x, α) dx dα

+

∫

A

∫

RX

r̃α(x)
2w(x, α) dx dα+ oP (n

−1h−d/2)

= Tn1 + ...+ Tn7 + oP (n
−1h−d/2),

where for any ℓ we denote by E(·|N(x) = ℓ) the expected value given that the interval

Ijk to which x belongs contains N(x) = ℓ elements.

Lemma 4. Suppose that the assumptions of Theorem 1 are satisfied. Then,

Tn1 = oP (an),

for any sequence {an} of positive constants tending to zero as n → ∞.

Proof of Lemma 4. Note that

Tn1 ≤ sup
α∈A

sup
x∈RX

|r̂0α(x)|
2

∫

A

∫

RX

I
(
|r̂0α(x)| > Ln(nh

d)−1/2
)
w(x, α) dx dα.

It is easily seen from Lemma 1 that

∫

A

∫

RX

I
(
|r̂0α(x)| > Ln(nh

d)−1/2
)
w(x, α) dx dα = oP (an),

for any an → 0, since the indicator inside the integral will be zero from some point on.

Lemma 5. Suppose the assumptions of Theorem 1 are satisfied. Then,

sup
α∈A

sup
x∈RX

∣∣∣E
{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N(x)

}∣∣∣ = oP ((nh
d/2)−1),

and hence, Tn2 = oP ((nh
d/2)−1).

Proof of Lemma 5. Put N−(x) = {u : xj − h ≤ uj ≤ xj + h for all j = 1, . . . , d}.

This is the support of the kernel h−dK(h−1[x− ·]). We also write N−(x) for the random

number of Xi’s that lie in N−(x). Note that N−(x) ⊂ N (x) and N−(x) ≤ N(x). We use

the shorthand notation m0 = nhd.

We will show below that

E
{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N−(x) = m

}
= O(Lnn

−3/2h−5d/4), (10)
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uniformly in x ∈ RX , α ∈ A and C∗
1m0 ≤ m ≤ C∗

2m0. For m+ ≥ m we have by

a simple argument that E
{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N(x) = m+, N−(x) = m

}
= E

{
r̂⋆α(x)

2 −

r̃α(x)
2
∣∣∣N−(x) = m

}
. By definition, we have that r̂⋆α(x) and r̃α(x) are absolutely bounded,

uniformly in x ∈ RX and α ∈ A. This gives that

E
{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N(x) = m+, N−(x) = m

}
≤ C,

uniformly in x ∈ RX , α ∈ A and m+ ≥ m. We will use this inequality and the fact that

P

(
N−(x) ≤

m+

4

∣∣∣N(x) = m+

)
≤ C exp(−cnhd),

uniformly in m+ ≥ 1
2
3dfX(x)nh

d. Using these facts and (10) we conclude that

E
{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N(x) = m+

}
= O(Lnn

−3/2h−5d/4),

uniformly in x ∈ RX , α ∈ A and 1
2
3dfX(x)nh

d ≤ m+ ≤ 2 3dfX(x)nh
d.

Because L∗
nn

−3/2h−5d/4 = o(n−1h−d/2) by Assumption (B3), and

P

(
1

2
3dfX(x)nh

d ≤ N(x) ≤ 2 3dfX(x)nh
d for all x ∈ RX

)
→ 1,

we get the statement of the lemma.

We now come to the proof of (10). Define r̂−α (x) = r̂0α(x)−∆h
α(x) with

∆h
α(x) = n−1/2h−d/4

E
[
K
(

x−Xi

h

)
∆α(Xi)fεα|X(0|Xi)

∣∣∣i ∈ N−(x)
]

E
[
K
(

x−Xi

h

)
fεα|X(0|Xi)

∣∣∣i ∈ N−(x)
] .

First note that

r̂−α (x) ≤ um
−1/2
0 if and only if (11)

∑

i∈N−(x)

K
(x−Xi

h

){
I(ε∆i,α ≤ ∆h

α(x) + um
−1/2
0 )− α

}
≥ 0.

Let

gx,α(u) = E
[
K
(x−Xi

h

){
I(ε∆i,α ≤ ∆h

α(x) + um
−1/2
0 )− α

}∣∣∣i ∈ N−(x)
]

= um
−1/2
0 E

[
K
(x−Xi

h

)
fεα|X(0|Xi)

∣∣∣i ∈ N−(x)
]

+
1

2
u2m−1

0 E
[
K
(x−Xi

h

)
f ′
εα|X(0|Xi)

∣∣∣i ∈ N−(x)
]

+O(Lnn
−1h−3d/4),
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uniformly in |u| ≤ C∗L∗
n, because of Assumption (B3). Then, with

ηi,α,u,x = K
(x−Xi

h

){
I(ε∆i,α ≤ ∆h

α(x) + um
−1/2
0 )− α

}
− gx,α(u),

we have that

P
(
r̂−α (x) ≤ um

−1/2
0

∣∣∣N−(x), N−(x) = m
)

= P
(
m−1/2

∑

i∈N−(x)

ηi,α,u,x ≥ −m1/2gx,α(u)
∣∣∣N−(x), N−(x) = m

)
.

We now argue that an Edgeworth expansion holds for the density ofm−1/2
∑

i∈N−(x) ηi,α,u,x

that is of the form

σ−1

S−3∑

r=0

Pr(−φ : {χ̄β,r})(σ
−1[· − x− µnn]) +O(n−(S−2)/2[1 + |σ−1[· − x− µnn]|

S]−1)

with standard notations, see Bhattacharya and Rao (1976), p. 53. In particular, Pr

denotes a product of a standard normal density with a polynomial that has coefficients

depending only on cumulants of order ≤ r + 2. In our case such an expansion follows

from Theorem 19.3 in Bhattacharya and Rao (1976). For this claim we have to verify

that their conditions (19.27), (19.29) and (19.30) hold. Our setting is slightly different

from theirs, since we consider triangular arrays of independent identically distributed

random variables instead of a sequence of independent random variables as is the case

in Theorem 19.3 in Bhattacharya and Rao (1976). But the same proof applies because

in our setting we can verify uniform versions of (19.27), (19.29) and (19.30). This can

be directly seen for (19.27). For checking (19.29), we consider the conditional density of

Up =
∑p

j=1(k(
x1−X1,j

h
), ..., k(

xd−Xd,j

h
))
{
I(ε∆j,α ≤ ∆h

α(x) + um
−1/2
0 ) − α

}
given the value of

ε∆j,α and given that Xj ∈ N−(x) for j = 1, ..., p. For p = 1 this density can be bounded

by a constant times (u1 · ... · ud)
−κ((k(0)− u1) · ... · (k(0)− ud))

−κ by Assumptions (B1)

and (B3). This bound holds uniformly over α, u, x and the value of ε∆1,α. Furthermore,

for p > κ we get that the conditional density of Up is uniformly bounded. From this we

conclude that the conditional density of
∑p

j=1K(
x−Xj

h
)
{
I(ε∆j,α ≤ ∆h

α(x)+um
−1/2
0 )−α

}
=

∑p
j=1 k(

x1−X1,j

h
) · ... · k(

xd−Xd,j

h
)
{
I(ε∆j,α ≤ ∆h

α(x)+um
−1/2
0 )−α

}
is uniformly bounded and

17



thus also the same holds for the conditional density of
∑p

j=1 ηj,α,u,x, given the value of

ε∆j,α and given that Xj ∈ N−(x) for j = 1, ..., p. Now, this gives that also the conditional

density of
∑p

j=1 ηj,α,u,x is bounded, given that Xj ∈ N−(x) for j = 1, ..., p, uniformly

over α, u and x. Thus, the square of this conditional density is integrable and by the

Fourier Inversion Theorem (see Theorem 4.1 (vi) in Bhattacharya and Rao (1976)) the

same holds for the squared modulus of its Fourier transform. Thus the modulus of the

Fourier transform of the conditional density of
∑2p

j=1 ηj,α,u,x, given that Xj ∈ N−(x) for

j = 1, ..., 2p, is integrable. This shows (19.29). For the proof of (19.30) one applies the

Riemann-Lebesgue Lemma (see Theorem 4.1 in Bhattacharya and Rao (1976)). Con-

sider for simplicity the case where d = 1. From the Riemann-Lebesgue Lemma we get

that sup|t|≥b

∣∣∣
∫ v1
v0

exp(itK(v)) dv
∣∣∣ < v1 − v0 for 0 < v0 < v1 with b > 0 large enough.

Furthermore, one can approximate E[exp(itηj,α,u,x)|Xj ∈ N−(x)] by

1

3

∫ 1+ρ(x)

−2+ρ(x)

∫

e∈R

exp[itK(v){I(e ≤ ∆h
α(x) + um

−1/2
0 − n−1/2h−d/4∆α(x))− α}]

× exp[−itgx,α(u)] fεα|X(e|x) dv de

for some function 0 ≤ ρ(x) ≤ 1. Furthermore, using our assumptions this can be approx-

imated by

α

3

∫ 1+ρ(x)

−2+ρ(x)

exp[it(1 − α)K(v)]dv +
1− α

3

∫ 1+ρ(x)

−2+ρ(x)

exp[−itαK(v)]dv.

These approximations hold uniformly in α ∈ A, |u| ≤ L∗
nm

−1/2
0 and x ∈ RX . By using

these facts we get (19.30).

By applying Theorem 19.3 in Bhattacharya and Rao (1976) with s ≥ 4 we get that

P
(
r̂−α (x) ≤ um

−1/2
0

∣∣∣N−(x), N−(x) = m
)

(12)

= 1− Φ
(
µα(u)

)
+m−1/2ρα(u)

(
1− µα(u)

2
)
φ
(
µα(u)

)
+O

(
m−1

0 (1 + µα(u)
2)−s

)
,

uniformly in u, α and x for C∗
1m0 ≤ m ≤ C∗

2m0 and constants C∗
1 < C∗

2 . Here we

have used the fact that terms for r = 2, ..., s − 3 in the expansion of Theorem 19.3 in
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Bhattacharya and Rao (1976) can be bounded by O
(
m−1

0 (1 + µα(u)
2)−s

)
. We used the

following notation

µα(u) = −
m1/2gx,α(u)

σα(u)
and ρα(u) =

m−1
∑n

i=1E(η3i,α,u,x|N
−(x) = m)

σ3
α(u)

,

with σ2
α(u) = m−1

∑n
i=1E(η2i,α,u,x|N

−(x) = m). It is easy to show that, uniformly in

|u| ≤ C∗L∗
n,

σ2
α(u)

= α(1− α)E
[
K2

(x−Xi

h

){
1 + (um

−1/2
0 − n−1/2h−d/4∆α(Xi))fεα|X(0|Xi)

}∣∣∣i ∈ N−(x)
]

+O(Lnm
−1
0 ),

and that

m−1
n∑

i=1

E(η3i,α,u,x|N
−(x) = m)

= E
[
K3

(x−Xi

h

)∣∣∣i ∈ N−(x)
]
α(1− 3α+ 2α2) +O(Lnm

−1/2
0 ).

Note that µα(−u) = µα(u) + O(Lnn
−1/2h−d/4), where we used that L∗

nn
−1h−d

= O(Lnn
−1/2h−d/4) because of Assumption (B3). Note also that with um = um1/2m

−1/2
0 ,

uniformly in |u| ≤ C∗L∗
n,

1− Φ
(
µα(u)

)

= 1− Φ
(umAn

B
1/2
n

)
+ φ

(umAn

B
1/2
n

)u2
mAn

2B
3/2
n

α(1− α)

×m−3/2
n∑

i=1

E
[
K2

(x−Xi

h

)
fεα|X(0|Xi)

∣∣∣N−(x) = m
]

+φ
(umAn

B
1/2
n

) u2
m

2B
1/2
n

m−3/2
n∑

i=1

E
[
K
(x−Xi

h

)
f ′
εα|X(0|Xi)

∣∣∣N−(x) = m
]

+O(Lnn
−1/2h−d/4),

where

An = m−1
n∑

i=1

E
[
K
(x−Xi

h

)
fεα|X(0|Xi)

∣∣∣N−(x) = m
]
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and

Bn = α(1− α)m−1
n∑

i=1

E
[
K2

(x−Xi

h

)∣∣∣N−(x) = m
]
.

Hence, uniformly in |u| ≤ C∗L∗
n,

1− Φ(µα(u)) + Φ(−µα(−u)) = 2
[
1− Φ

(umAn

B
1/2
n

)]
+O(Lnn

−1/2h−d/4). (13)

From (13) and the above calculations it now follows that

E
{
r̂−α (x)

2I(|r̂−α (x)| ≤ L∗
nm

−1/2
0 )

∣∣∣N−(x) = m
}

= 2m−1
0

∫ L∗
n

0

vP
(
r̂−α (x) > vm

−1/2
0

∣∣∣N−(x) = m
)
dv

−2m−1
0

∫ 0

−L∗
n

vP
(
r̂−α (x) ≤ vm

−1/2
0

∣∣∣N−(x) = m
)
dv

= 2m−1
0

∫ L∗
n

0

v
[
P
(
r̂−α (x) > vm

−1/2
0

∣∣∣N−(x) = m
)
+ P

(
r̂−α (x) ≤ −vm

−1/2
0

∣∣∣N−(x)
)]

dv

= 4m−1
0

∫ L∗
n

0

v
[
1− Φ

(vm1/2m
−1/2
0 An

B
1/2
n

)]
dv +O(Lnn

−3/2h−5d/4)

= 4m−1

∫ L∗
n

0

v
[
1− Φ

( vAn

B
1/2
n

)]
dv +O(Lnn

−3/2h−5d/4)

= 2m−1
[
(L∗

n)
2
{
1− Φ

(L∗
nAn

B
1/2
n

)}
+

∫ L∗
n

0

v2
An

B
1/2
n

φ
( vAn

B
1/2
n

)
dv

]
+O(Lnn

−3/2h−5d/4)

= 2m−1Bn

A2
n

∫ L∗
nAnB

−1/2
n

0

z2φ(z) dz +O(Lnn
−3/2h−5d/4),

uniformly in C∗
1m0 ≤ m ≤ C∗

2m0 with constants C∗
1 < C∗

2 . If L∗
n = (log n)γ is chosen

with γ > 0 large enough we get that the right hand side of the last equation is equal to

m−1Bn

A2
n
+OP (Lnn

−3/2h−5d/4). This follows since it can be easily shown that

2

∫ L∗
nAnB

−1/2
n

0

z2φ(z) dz − 1 = o(Lnn
−C) = o(m−2).
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Next, consider

E
{
(r̃α(x)−∆h

α(x))
2
∣∣∣N−(x) = m

}

= E
{(

m−1
n∑

i=1

K
(x−Xi

h

)
fεα|X(0|Xi)

)−2

m−2
n∑

i=1

K2
(x−Xi

h

)∣∣∣N−(x) = m
}
α(1− α)

+O(Lnn
−2h−3d/2)

= m−1Bn

A2
n

+O(Lnn
−3/2h−5d/4).

The last two expansions give that

E
{
r̂−α (x)

2I(|r̂−α (x)| ≤ Lnm
−1/2
0 )

∣∣∣N−(x) = m
}

(14)

= E
{
(r̃α(x)−∆h

α(x))
2
∣∣∣N−(x) = m

}
+O(Lnn

−3/2h−5d/4),

uniformly in x ∈ RX , α ∈ A and C∗
1m0 ≤ m ≤ C∗

2m0. Similarly one can show that

E
{
r̂−α (x)I(|r̂

−
α (x)| ≤ L∗

nm
−1/2
0 )

∣∣∣N−(x) = m
}

= 2m
−1/2
0

∫ L∗
n

0

P
(
r̂−α (x) > vm

−1/2
0

∣∣∣N−(x) = m
)
dv

−2m
−1/2
0

∫ 0

−L∗
n

P
(
r̂−α (x) ≤ vm

−1/2
0

∣∣∣N−(x) = m
)
dv

= 2m
−1/2
0

∫ L∗
n

0

[
P
(
r̂−α (x) > vm

−1/2
0

∣∣∣N−(x) = m
)
− P

(
r̂−α (x) ≤ −vm

−1/2
0

∣∣∣N−(x)
)]

dv

= O(Lnn
−1h−d)

and

E
{
r̃α(x)−∆h

α(x)
∣∣∣N−(x) = m

}
= O(Lnn

−1h−d/2).

The last two expansions give that

∆h
α(x)

[
E
{
r̂−α (x)I(|r̂

−
α (x)| ≤ Lnm

−1/2
0 )

∣∣∣N−(x) = m
}
−E

{
r̃α(x)−∆h

α(x)
∣∣∣N−(x) = m

}]

= O(Lnn
−3/2h−5d/4), (15)

uniformly in x ∈ RX , α ∈ A and C∗
1m0 ≤ m ≤ C∗

2m0.

From (14)–(15) we get that (10) holds. This concludes the proof of the lemma.
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Lemma 6. Suppose the assumptions of Theorem 1 are satisfied. Then,

Tn3 = OP (Lnn
−5/4h−3d/4) = oP ((nh

d/2)−1).

Proof of Lemma 6. For simplicity of exposition of the argument, let us assume that

Xi is one-dimensional. For arbitrary j and for k = 1, 2, 3, define

Ujk =

∫

A

∫

Ijk

[
r̂⋆α(x)

2 − r̃α(x)
2 − E

{
r̂⋆α(x)

2 − r̃α(x)
2
∣∣∣N(x)

}]
w(x, α) dx dα.

Then we can write Tn3 = Tn31 + Tn32 + Tn33 with Tn3k =
∑

j Ujk (k = 1, 2, 3). The

terms Tn31, Tn32 and Tn33 are sums of O(h−1) conditionally independent summands. The

summands are uniformly bounded by a term of order OP (Lnn
−5/4h−1/4). This follows

from Lemma 5, from the fact that supα∈A supx |r̃α(x)| = OP (Ln(nh)
−1/2), see also (8),

and from the Bahadur representation for r̂⋆α(x), given in Lemma 3. It now follows that

Tn3k = OP (Lnn
−5/4h−3/4), which implies the statement of the lemma for d = 1. For d > 1

one can use the same approach.

Lemma 7. Suppose the assumptions of Theorem 1 are satisfied. Then,

Tn4 = oP ((nh
d/2)−1).

Proof of Lemma 7. This is obvious, since Tn4 = OP (Ln(nh
d)−3/4n− 1

2
+c) = oP ((nh

d/2)−1),

thanks to Assumption (B5) and Lemma 3.

Lemma 8. Suppose the assumptions of Theorem 1 are satisfied. Then,

Tn5 = oP ((nh
d/2)−1).

Proof of Lemma 8. Write

Tn5 = 2

∫

A

∫

RX

∑n
i=1K

(
x−Xi

h

)
{I(ε∆i,α ≤ 0)− α}

∑n
i=1K

(
x−Xi

h

)
fεα|X(0|Xi)

(θ̂(α)− θ0(α))
⊤γα(x)w(x, α) dx dα

=
2

n

∫

A

∫

RX

∑n
i=1K

(
x−Xi

h

)
{I(ε∆i,α ≤ 0)− α}

gh,α(x)

×(θ̂(α)− θ0(α))
⊤γα(x)w(x, α) dx dα+ oP ((nh

d/2)−1)

= 2

∫

A

(θ̂(α)− θ0(α))
⊤ 1

n

n∑

i=1

ρh,α(Xi){I(ε
∆
i,α ≤ 0)− α} dα+ oP ((nh

d/2)−1), (16)
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with gh,α(x) = E
[
K
(
x−X
h

)
fεα|X(0|X)

]
and

ρh,α(v) =

∫

RX

K
(x− v

h

)γα(x)w(x, α)
gh,α(x)

dx.

Using the notations Qh,α(Xi) =
ρh,α(Xi)∑n

j=1
ρh,α(Xj)

, F̂ε∆α
(y) =

∑n
i=1Qh,α(Xi)I(ε

∆
i,α ≤ y) and

Fε∆α
(y) = P (ε∆α ≤ y), we have that

1

n

n∑

i=1

ρh,α(Xi){I(ε
∆
i,α ≤ 0)− α}

=
[
F̂ε∆α

(0)− α
](1

n

n∑

i=1

ρh,α(Xi)
)

=
[
F̂ε∆α

(0)− Fε∆α
(0)

](1
n

n∑

i=1

ρh,α(Xi)
)
+
[
Fε∆α

(0)− α
]( 1

n

n∑

i=1

ρh,α(Xi)
)

= OP (n
−1/2) +OP (n

−1/2h−d/4),

uniformly in α ∈ A, and hence (16) is OP (n
−1+ch−d/4) = oP ((nh

d/2)−1) for c small enough.

Lemma 9. Suppose the assumptions of Theorem 1 are satisfied. Then,

Tn6 = oP ((nh
d/2)−1).

Proof of Lemma 9. The proof is obvious, since by Assumption (B5), we have that

Tn6 = OP (n
−1+2c) = oP ((nh

d/2)−1) for c small enough.

Lemma 10. Suppose the assumptions of Theorem 1 are satisfied. Then,

nhd/2Tn7 − bh,A
d
→ N(DA, VA).

Proof of Lemma 10. The proof is very similar to the proof of e.g. Proposition 1 in

Härdle and Mammen (1993). Write

Tn7 = n−2
∑

i,j

∫

A

∫

RX

K
(x−Xi

h

)
K
(x−Xj

h

)
{I(ε∆i,α ≤ 0)− α}{I(ε∆j,α ≤ 0)− α}

×ĝα(x)
−2w(x, α) dx dα,

where ĝα(x) = n−1
∑n

i=1K
(

x−Xi

h

)
fεα|X(0|Xi). By writing I(ε∆i,α ≤ 0) − α =

[
I(ε∆i,α ≤

0)− I(εi,α ≤ 0)
]
+
[
I(εi,α ≤ 0)−α

]
, we can decompose Tn7 into Tn7 = Tn71+Tn72+2Tn73.
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As in Härdle and Mammen (1993), Tn73 is negligible. Straightforward calculations show

that Tn71 = (nhd/2)−1(DA + oP (1)). Next, write Tn72 = Tn72a + Tn72b with

Tn72a =
1

n2

n∑

i=1

Unii,

Tn72b =
1

n2

∑

i 6=j

Unij,

where

Unij =

∫

A

∫

RX

K
(x−Xi

h

)
K
(x−Xj

h

)
{I(εi,α ≤ 0)− α}{I(εj,α ≤ 0)− α}

×ĝα(x)
−2w(x, α) dx dα.

By calculating its mean and variance it can be checked that nhd/2Tn72a = bh,A + oP (1).

Thus for the lemma it remains to check that nhd/2Tn72b
d
→ N(0, VA). For the proof

of this claim one can proceed as in Härdle and Mammen (1993) and apply the central

limit theorem for U-statistics of de Jong (1987). For this purpose one has to verify that

n2hdVar(Tn72b) → VA, max1≤i≤n

∑n
j=1Var(Unij)/Var(Tn72b) → 0 and E[T 4

n72b]/(Var(Tn72b))
2

→ 3. This can be done by straightforward but tedious calculations.

Proof of Theorem 1. The theorem follows immediately from Lemmas 4–10. Lemmas

4–9 imply the negligibility of the terms Tn1, .., Tn6. Lemma 10 shows the asymptotic

normality of nhd/2Tn7.

4 Proof of Theorem 2

The theorem can be shown by verification of the conditions of the central limit theorem

for U-statistics of de Jong (1987), in the same way as was done in the proof of Lemma

10. The crucial point in the proof is to note that I(Ui ≤ α) has the same distribution as

I(εi,α ≤ 0), and hence the calculations in the proof of Lemma 10 go through in this proof.
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5 Proof of Theorem 3

For the proof of Theorem 3 one can proceed similarly as in the proof of Theorem 1. Using

Theorem 2 in Guerre and Sabbah (2012) we get a Bahadur expansion of r̂†α(x), of which

the remainder term is of the order OP (Ln(nh
d)−3/4). Because now Ln(nh

d)−3/4×(nhd)−1/2

is of lower order than O(n−1h−d/2) one can directly replace r̂†α(x) in the definition of T̂ †
A

by its Bahadur expansion and proceed as in the proof of Lemma 10.
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