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Abstract

Stochastic frontier models are widely used to measure, e.g., technical efficiencies
of firms. The classical stochastic frontier model often suffers from the empirical
artefact that the residuals of the production function may have a positive skewness,
whereas a negative one is expected under the model, which leads to estimated full
efficiencies of all firms. We propose a new approach to the problem by generaliz-
ing the distribution used for the inefficiency variable. This generalized stochastic
frontier model allows the sample data to have the wrong skewness while estimating
well-defined and non-degenerate efficiency measures. We discuss the properties of
the model and its maximum likelihood estimator, and provide a simulation study to
show that our model delivers estimators of efficiency with smaller mean squared er-
ror than those of the classical model even if the population skewness has the correct
sign. Finally, we apply the model to data of the U.S. textile industry for 1958-2005,
and show that for a number of years our model suggests efficiencies well below the
frontier, while the classical one estimates no inefficiency in those years.
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1 Introduction

One of the most popular econometric models to estimate production frontier and firm effi-

ciency is the parametric stochastic frontier model (SFM). The basic model was introduced

by Aigner et al. (1977) and Meeusen and van den Broek (1977). The model assumes some

functional form for the frontier which represents the locus of maximal achievable output

Y ∈ R (production) for a given set of inputs X ∈ R
p (production factors such as labor,

energy, capital, etc.). Since not all firms are efficient, we observe production plans (xi, yi)

that may lie below this optimal frontier. The interesting feature of SFM (as opposed

to deterministic frontier models) is that the model allows also the presence of the usual

random noise. Thus, the error term in a SFM is a convolution of two terms: a one-sided

inefficiency term plus a classical symmetric statistical noise, usually modeled by a normal

distribution.

Several one-sided distributions have been proposed in the literature for the inefficien-

cies. The pioneering work of Aigner et al. (1977) suggests the use of an exponential or of

a half-normal distribution. Other choices, e.g., two-parameter distributions such as the

gamma (Greene 1990) or the truncated-normal (Stevenson 1980), have been proposed, see

Kumbhakar and Lovell (2000), or Greene (2007) for detailed surveys. All of these one-

sided distributions have a positive skewness, so Li (1996) considers the case of a uniform

distribution and Carree (2002) a negative binomial allowing negative skewness. In the

same spirit, Qian and Sickles (2009) and Almanidis and Sickles (2011) consider a double

truncated normal distribution for the inefficiencies. The latter three approaches assume

that the inefficiency term is bounded above and below.

Typically the basic model can be written as

Yi = α0 + α′Xi +Wi, i = 1, . . . , n, (1)

where Wi = Vi − Ui with Vi ∼ N(0, σ2
v) and Ui has one-sided parametric distribution on

R+. We assume independence between Vi and Ui which are both i.i.d.1

It is well known (see, e.g., Greene 1990) that the third moment of Wi is given by

E
[
(Wi − EWi)

3
]
= −E

[
(Ui − E(Ui))

3
]
, (2)

so that a positive skewness for Ui implies a negative skewness for Wi. A simple estimator

of the parameters of the model is given by the Modified OLS (MOLS) approach (Olson

1In this paper we consider the production frontier case, but this can be easily translated to a cost

frontier model where the error wi would have the form vi + ui, ui ≥ 0 accounting for cost inefficiencies.
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et al. 1980, Greene 1990) where a simple OLS procedure leads to consistent estimators of

the slope parameters α of the following shifted model

Yi = α∗
0 + α′Xi + εi, i = 1, . . . , n, (3)

where α∗
0 = α0 − E(Ui) so that εi = Wi + E(Ui) = 0.

Then the moments of OLS residuals are used to estimate the parameters of the dis-

tributions of Ui and Vi. If these distributions involve two unknown parameters (as in the

normal/half-normal or normal/exponential cases), only the second and third empirical

moments of ε̂
i,OLS are needed (one additional moment of higher order is needed if the

distributions of ui and vi involve three unknown parameters, see Kumbhakar and Lovell

2000 for details).

From (2), it is clear that µ̂3,n = n−1
∑n

i=1 ε̂
3

i,OLS is a consistent estimator of the

negative of the third moment of Ui, which gives the sign of the skewness of Ui. It is well

known and illustrated by numerous Monte-Carlo experiments (see Olson et al. 1980, or

Simar and Wilson 2010) that very often, in finite samples, the sign of µ̂3,n is positive, even

though the opposite is expected. In this literature, researchers say that they observe the

“wrong” skewness when the sign of the empirical skewness is positive. The consequence

of a “wrong” skewness, as shown, e.g., by Waldman (1982), is that the MOLS and the

MLE estimates of the slope are identical to the OLS slope, and there are no inefficiencies:

the mean and the variance of Ui are estimated at zero and all the firms are supposed to

be efficient, i.e. lying on the estimated frontier.

Long debates have appeared about this issue, see Carree (2002) and Almanidis and

Sickles (2011) and the references therein for details. To summarize, the question whether

the skewness is “wrong” or not is perhaps a misleading debate. The OLS residuals are

what they are, and the wrong sign of the skewness is indeed unexpected when ui has a

positive skewness.

For these reasons, solutions have been proposed for choosing distributions for Ui al-

lowing also negative skewness, for example, the negative binomial of Carree (2002) and

the double truncated normal of Qian and Sickles (2009). While these approaches have

their merits, there are potential drawbacks. In particular, first they provide distributions

with bounded support, and second they do not nest the classical models (such as the

normal/half-normal or normal/exponential). The traditional SFM may be correct but

we are observing the unexpected skewness just by analyzing an unlucky sample. This is

annoying as it plagues the estimation of the inefficiencies. The contribution of this paper

is to extend the classical SFM to a model allowing the opposite skewness, but still nesting
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the traditional SFM. This is important because, when observing the “wrong” skewness,

most researchers are tempted to believe that the model is wrong, and we know that even a

correct SFM allowing inefficient firms may produce the wrong sign for the skewness. This

happens more often with small sample sizes or when the ratio Var(V )/Var(U) increases

(see Simar and Wilson 2010 for a careful Monte-Carlo investigation).

The remainder of the paper is organized as follows. The following section presents the

model, discusses its properties and its estimation. Section 3 reports results of a simulation

study to illustrate the usefulness of the proposed model even in situations where the true

model is the classical one. Finally, in Section 4 we apply the model to analyze the efficiency

of sub-sectors of the U.S. textile industry for 1958-2005.

2 The model

Let us first recall the classical stochastic frontier model, starting from the basic model

(1),

Y = α0 + α′X +W, (4)

where W = V −U , and U and V are independent random variables, the former represent-

ing inefficiency, and the latter statistical noise, which we assume is given by V ∼ N(0, σ2
v).

The positive random variable U is linked to the notion of inefficiency. The typical as-

sumptions on the distribution of U imply that U has a positive skewness and W has

negative skewness, which often leads to incompatibility with data when the sample skew-

ness of residuals w is positive. Mean inefficiency in the basic model is usually measured

by E[exp(−U)], and inefficiency for a given firm by

τc = E[exp(−U)|W ], (5)

such that τc ∈ [0, 1] by construction.

The classical normal- halfnormal SFM assumes that U has a halfnormal density given

by

hµ(u) =
2

µ
√
π/2

φ

(
u

µ
√
π/2

)
, u ≥ 0. (6)

where µ > 0 is the expectation of U , and σu = µ
√
π/2 > 0 its standard deviation. The

density of W is given by

g(w) =
2

σ
φ

(−w
σ

)
Φ

(
−w
σ

µ
√
π/2

σv

)
(7)
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where σ2 = µ2π/2 + σ2
v and Φ(·) is the cdf of a standard normal random variable, see,

e.g., Kumbhakar and Lovell (2000, p.75). They also give expressions for the conditional

expectation of U and the inefficiency:

U |W = w ∼ N+(µ∗, σ
2
∗)) (8)

E(U |W = w) = σ∗

[
A+

φ(A)

Φ(A)

]
) (9)

E(exp(−U)|W = w) = [1− Φ(σ∗ − A)] [Φ(A)]−1 exp(−µ∗ + σ2
∗/2)) (10)

where µ∗ = −wµ2π/(2σ2), σ2
∗ = µ2σ2

vπ/(2σ
2) and A = µ∗/σ∗. These expressions can

then be used for maximum likelihood estimation of the parameters and of the inefficiency

measures.

Other distributions such as the exponential have been used for U , but the normal-

halfnormal can be considered as the benchmark model. In the following, we are first

proposing a general framework that includes the classical stochastic frontier model as

a special case, and then give examples of extended normal-halfnormal and exponential

distributions.

2.1 The extended stochastic frontier model

A first modification of the basic model would be to maintain the production model (4),

but to replace the term W = V − U by the following composed term:

W = V − U + 2E[U ]I(µ < 0) (11)

where µ ∈ R is the expectation of U , I(·) is the indicator function, and the distribution

of U depends on the sign of µ: If µ > 0, then U has density with positive support, while

if µ < 0, then it has density with negative support.

Obviously, model (11) reduces to the classical SFA model if µ > 0. However, if µ < 0,

the model isW = V −U+2E[U ], and the correction term 2E[U ] is shifting the distribution

of −U such that the mean of −U + 2E[U ] with µ < 0 is the same as the mean of −U in

the classical case with µ > 0, namely −|µ| in both cases. Therefore, the mean of W only

depends on the size of µ, not its sign. The size of µ is related to measures of inefficiency,

whereas the sign of µ gives flexibility to fit distributional properties of the data, such as

positive or negative skewness. Full efficiency is attained when µ = 0, in which case U

degenerates to a one-point distribution at zero andW ∼ N(0, σ2
v) is symmetric. Efficiency

is defined as a natural extension of (5),

τI = E[exp(−U + 2E[U ]I(µ < 0))|W ], (12)
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which collapses to τc if µ > 0. Note that, if µ < 0, then U has negative support and there

would be a small probability that τi is larger than one. Firms would be considered as

super-efficient in this case, which may happen temporarily in situations of technological

innovation as outlined by Carree (2002). This case is discussed in detail in Section 2.3.

Model (11) can be viewed as a threshold model with threshold at zero. Rather than a

threshold, one might prefer a smooth transition between the two regimes µ > 0 and µ < 0

which would give additional flexibility. This could be achieved by the following extension:

W = V − U + 2E[U ](1−Gγ(µ)) (13)

where µ ∈ R is a parameter linked to the distribution of U , to be specified below, and

Gγ(µ) is the logistic function defined by Gγ(µ) = (1 + exp(−γµ))−1. In the limiting case

γ → ∞, for which Gγ(µ) converges to the indicator function I(µ > 0), so that the above

model (11) is recovered as a special case.

We now define efficiency as a natural extension of (5) to be given by

τγ = E[exp(−U + 2E[U ](1 −Gγ(µ)))|W ], (14)

which collapses to τI if γ → ∞, and to τc if µ > 0 and γ → ∞. Hence, this measure

includes the classical efficiency measure as a special case. For γ < ∞, there is again a

small probability of obtaining super-efficiency, i.e., τγ > 1, both for positive and negative

µ, which will be discussed in Section 2.3.

For the inefficiency variable U we assume that it has density given by

fµ(u) = hµ(u) {Gγ(µ)I(u ≥ 0) + (1−Gγ(µ))I(u < 0)} (15)

where I(·) is the indicator function, and hµ(u) is a function defined on R with the following

properties:

hµ(u) ≥ 0 (16)

hµ(u) = hµ(−u) (17)

hµ(u) = h−µ(u) (18)∫ ∞

0

hµ(u)du = 1 (19)

∫ ∞

0

uhµ(u)du = µ(2Gγ(µ)− 1). (20)

Equation (17) requires that h is an even function of u. The remaining conditions ensure

that h is a density on (0,∞) with parameter µ and expectation µ(2Gγ(µ)− 1).
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Note that fµ(u) is a well defined density function since fµ(u) ≥ 0 and

∫ ∞

−∞
fµ(u)du = (1−Gγ(µ))

∫ 0

−∞
hµ(u)du+Gγ(µ)

∫ ∞

0

hµ(u)du

= (1−Gγ(µ))

∫ ∞

0

hµ(u)du

︸ ︷︷ ︸
=1

+Gγ(µ)

∫ ∞

0

hµ(u)du

︸ ︷︷ ︸
=1

= 1−Gγ(µ) +Gγ(µ) = 1

Moreover, note that by construction, E[U ] = µ(2Gγ(µ)− 1)2, since

∫ ∞

−∞
ufµ(u)du = (1−Gγ(µ))

∫ 0

−∞
uhµ(u)du+Gγ(µ)

∫ ∞

0

uhµ(u)du

= −(1−Gγ(µ))

∫ ∞

0

uhµ(u)du

︸ ︷︷ ︸
=µ(2Gγ (µ)−1)

+Gγ(µ)

∫ ∞

0

uhµ(u)du

︸ ︷︷ ︸
=µ(2Gγ (µ)−1)

= µ(2Gγ(µ)− 1)2

Hence, the third term in (13) is given by

a(µ) := 2E[U ](1 −Gγ(µ)) = 2µ(2Gγ(µ)− 1)2(1−Gγ(µ)), (21)

and

E[W ] = −E[U ] + a(µ) = −µ(2Gγ(µ)− 1)3. (22)

Due to the symmetry assumption (17), if h has positive skewness on (0,∞), then it

will have negative skewness on (−∞, 0) with µ < 0. Suppose that h has positive skewness

on (0,∞), which is the typical case. Then W would have negative skewness if µ > 0

and positive skewness if µ < 0. Hence, inefficiency and skewness are no longer directly

linked, and one can have, even asymptotically, inefficiency and positive skewness, which is

not possible in the classical model. Another advantage of the extended model compared

with the classical model is that convergence problems of maximum likelihood estimators

in cases of positive sample skewness are avoided.

The following lemma gives the form of the density of W , used, e.g., for maximum

likelihood estimation.

Lemma 1 The density of W has the following form:

g(w) = Gγ(µ)g
+(−w + a(µ)) + (1−Gγ(µ))g

+(w − a(µ)) (23)
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where

g+(z) =
1

σv

∫ ∞

0

hµ(u)φ(
z − u

σv
)du. (24)

and φ(·) is the standard normal density function.

The function g+(·) is typically known or can be calculated. In the limiting case γ → ∞
and µ > 0, we have Gγ(µ) = 1, a(µ) = 0, and the density of w would simplify to

g(w) = g+(−w).
If hµ(u) is twice continuously differentiable w.r.t. µ, then so is g(w) and the likelihood

function, and standard MLE theory applies. To test the null hypothesis H0 : µ = 0, the

classical likelihood ratio statistic follows a chi-square distribution asymptotically. How-

ever, for the limiting case Gγ(µ) = I(µ > 0), the likelihood function is not continuously

differentiable at zero, and hence the LR test follows non-standard asymptotics as in Lee

(1993).

2.2 Examples

In the following we give some examples of distributions that are often used in practice.

2.2.1 The extended normal-halfnormal distribution

Suppose U has density given by (15) with hµ(u) given by

hµ(u) =
2

µ̃
√
π/2

φ

(
u

µ̃
√
π/2

)
(25)

where µ̃ = µ(2Gγ(µ)− 1).

For the case γ → ∞ and µ ≥ 0, U has a positive half-normal distribution with support

(0,∞) with parameter σu = µ
√
π/2 > 0. This is the classical normal-half-normal SFA

model. If γ → ∞ and µ < 0, then U has a negative half-normal distribution with support

(−∞, 0) and parameter σu = −µ
√
π/2 > 0.

In general, we have µ̃ =
√
2/πσu, and hence E[U ] = µ̃(2Gγ(µ) − 1) = (2Gγ(µ) −

1)
√
2/πσu.

The density of W can be computed using (23) with the expression for g+(z) given by

g+(z) =
2

σ
φ
(z
σ

)
Φ

(
z

σ

µ̃
√
π/2

σv

)
(26)
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where σ2 = µ̃2π/2 + σ2
v and Φ(·) is the cdf of a standard normal random variable. For

the classical case µ ≥ 0 and Gγ(µ) = I(µ > 0), this density has been given, e.g., by

Kumbhakar and Lovell (2000, p. 75).

Note that this distribution is closely related to the skewed normal distribution of

Azzalini (1985). A random variable Z is said to follow a skewed-normal distribution,

Z ∼ SN(λ), if its density function is given by ψ(z;λ) = 2φ(z)Φ(λz), where λ ∈ R, φ(·)
and Φ(·) are pdf and cdf, respectively, of the standard normal distribution. Consider

the limiting case γ → ∞. If µ > 0, then g(w) = g+(−w) = 1
σ
ψ(−w

σ
;λ) = 1

σ
ψ(w

σ
;−λ)

with λ = µ
√
π/2/σv. Thus, in this case, W follows a scaled skewed-normal distribution

with negative skewness. If µ < 0, then g(w) = g+(w − 2µ) = 1
σ
ψ(w−2µ

σ
;λ) with λ =

−µ
√
π/2/σv > 0. In this case, W follows a scaled and shifted skewed normal distribution

with positive skewness.

It can also be checked using the expression for the mean of a skewed-normal distri-

bution given by Azzalini (1985) that E[W ] only depends on the absolute value of µ, not

on its sign. In particular, if Z ∼ SN(λ), then E[Z] =
√

2/π λ√
1+λ2

, and straightforward

calculations yield E[W ] = −|µ|, which corresponds to the limiting case of (22) for γ → ∞.

Computation of inefficiencies The conditional density of U |W can be calculated as

p(u|w) = f(u, w)/g(w), with joint density f(u, w) and marginal density g(w) given by

f(u, w) =
1

µ̃σv
√
π3/2

exp

{
− u2

µ̃2π
− 1

2

(
w + u− a(µ)

σv

)2
}
H(u)

g(w) = Gγ(µ)g
+(−w + a(µ)) + (1−Gγ(µ))g

+(w − a(µ))

where g+(·) is given in (26) and H(u) = Gγ(µ)I(u ≥ 0)+ (1−Gγ(µ))I(u < 0). Using the

density p(u|w), we can calculate technical efficiency E[exp(−U + a(µ))|W ] numerically.

Consider the asymptotic case with γ → ∞, such that Gγ(µ) = I(µ ≥ 0). If µ > 0,

then a(µ) = 0, g(w) = g+(−w), and we recover the classical formulae of Kumbhakar and

Lovell (2000, p.74-78) given in (8)-(10).

2.2.2 The extended exponential distribution

The random variable U has density given by (15) with

hµ(u) =
1

µ̃
exp

(
−|u|
µ̃

)
(27)

where µ̃ = µ(2Gγ(µ)− 1).
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Figure 1: Density gµ(w) in (23) with hµ(·) given by (27), µ = 2, and

γ = 1 (solid line) and γ = 10 (dashed line).

The function g+(z) in the expression for g(w) in (23) is given by

g+(z) =
1

µ̃
exp

(
− z
µ̃
+

σ2
v

2µ̃2

)
Φ

(
z

σv
− σv

µ̃

)
, (28)

where Φ(·) is the cdf of a standard normal random variable. For the classical case µ ≥ 0

and γ → ∞, we obtain Gγ(µ) = 1 and a(µ) = 0, such that one obtains from the expression

for g(w) in (23) g(w) = g+(−w), and this density has been given, e.g., by Kumbhakar

and Lovell (2000, p.80).

To illustrate the shape of this distribution as a function of µ and of γ, we fix µ = 2 in

Figure 1 and let γ be either 1 or 10, while in Figure 2 we fix γ = 10 and let µ be either 2 or

-2. Note that in Figure 2, both densities share the same mean, E[W ] = −µ(2Gγ(µ)−1)3 ≈
−2.

Computation of inefficiencies To obtain measures of technical efficiency for this

model, we calculate the conditional density p(u|w) = f(u, w)/g(w), where the joint density

9



Figure 2: Density gµ(w) in (23) with hµ(·) given by (27), γ = 10,

and µ = 2 (solid line) and µ = −2 (dashed line).

f(u, w) and marginal density g(w) are given by

f(u, w) =
1√

2πσvµ̃
exp

(
−(w + u− a(µ))2

2σ2
v

− |u|
µ̃

)
H(u)

g(w) = Gγ(µ)g
+(−w + a(µ)) + (1−Gγ(µ))g

+(w − a(µ))

where g+(·) is given by (28), and H(u) = Gγ(µ)I(u ≥ 0) + (1−Gγ(µ))I(u < 0).

Again, we can use these expressions to calculate technical efficiency E[exp(−U +

a(µ))|W ] numerically.

2.3 Discussion

We see indeed that the model we propose can be seen as an extension of the tradi-

tional stochastic frontier model (we limited our presentation to the most popular nor-

mal/halfnormal or normal/exponential models). This appears clearly when γ → ∞,

which happens asymptotically if we choose, as in the next section, γ = Cnν for some

constant C and some ν > 0. So the standard SFM can be seen as a kind of “anchorage”

model in which we believe, but we want to allow for the possibility that in a finite sample

we have negative skewness of Ui.

10
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Figure 3: The upper figure plots the density fµ(u) of U in (15) with

hµ(u) given by (25) (half-normal case), γ = ∞ and µ = 0.2. The

lower figure plots the density of U−2E[U ], where U has density fµ(u)

with µ = −0.2. Both densities have a mean of 0.2.

The easiest way to interpret the model is to analyze its components when Gγ(µ) =

I(µ > 0). Figure 3 illustrates this case by showing the two possibilities for the density of

U . The upper panel corresponds to the classical stochastic frontier model, whereas the

lower panel is the distribution underlying U − 2E[U ] when it has negative skewness (note

that the two distributions have equal means by construction).

In practice with our logistic weights we will have a continuous mixture of these two

extreme cases that is illustrated in Figure 4. One clear advantage of doing this is that

in the lower panel (µ < 0) the size of the inefficiency is not bounded. However, the

inefficiency can potentially be negative indicating the existence of “super efficient” firms.

Below we discuss how this could be interpreted, which is mainly relevant for the case

µ < 0. For the case µ > 0 this can be prevented by considering the limiting case of our
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Figure 4: The upper figure plots the density fµ(u) of U in (15) with

hµ(u) given by (25) (half-normal case), γ = 5 and µ = 0.2. The lower

figure plots the density of U − 2E[U ], where U has density fµ(u) with

µ = −0.2. Both densities have a mean of µ(2Gγ(µ)− 1)2 ≈ 0.043.

model as γ → ∞.

There are two interpretations of the situation when the skewness of the residuals Ŵi

is positive. The first is that this is purely a problem in finite samples as demonstrated

in Simar and Wilson (2010). Thus, the classical stochastic frontier model with U having

positive skewness is considered as an appropriate model, but the sample available to

the researcher still shows positive skewness of Ŵi. Applying the traditional Stochastic

Frontier Model will estimate the mean of Ui to be equal to zero and technical efficiency

cannot be estimated as it is equal to one for all firms. This clearly is unreasonable and

researchers may infer that their model is wrong. In such situations our model offers a

possibility to approximate the “true” Stochastic Frontier Model and to obtain reasonable

estimates for the technical efficiency along with the possibility to rank firms according to
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their efficiency.

The second interpretation allows the skewness of U to be negative even in population.

Some of the arguments developed in the literature to justify the possibility of a negative

skewness of U are based on the assumption that at some point in time, certain firms

could develop new skills (which Carree, 2002 defines as innovation) providing some super-

efficient firms with respect to the current technology, pushing the distribution of U to the

left, with negative skewness and potentially very small values for U . When this happens

the (relatively few) innovative firms are highly efficient, even super-efficient with respect

to the old frontier, whereas the firms that have not (yet) adopted the new technology

are relatively inefficient. This period could be followed by a period of learning by the

other firms in the industry (called imitation by Carree, 2002). The cross section picture

could be done at one moment or another. During the transition phase the firms that have

already adapted have a different production frontier than those who have not adapted.

Estimating a model on both types of firms it is very likely to observe the wrong skewness

in a sample. The negative binomial and the double truncated model are ways to deal with

such situations. However, these approaches have some drawbacks. First, the support of U

is bounded at the two boundaries (one being zero), which a priory restricts the permissible

range of inefficiency and is an uncommon assumption in the literature. Second, these

model do not nest the traditional stochastic frontier model, which may be disadvantageous

in cases where the wrong skewness problem is not present.

Our model in (13) corrects for that and may be interpreted along similar lines, pushing

the argument even more. This can be represented by the lower panels of Figures 3 and 4.

Those super-efficient (innovative) firms can indeed be very efficient with no bounds for the

values of U that can in principle even be negative. Thus there is also a positive probability

of observing some super-efficient firms above the efficient frontier. Furthermore, in our

model with µ < 0 and Ui < 0, we have a second boundary which is the right endpoint

of the distribution of U − 2E[U ] in the lower panel of Figure 3. We call this frontier the

“bankruptcy frontier”. In the presence of an innovation in the industry, firms that would

stay below this frontier would disappear after some period from the market if they do

not adapt in some form. The extended model with γ <∞ in Figure 4 is more attractive

in this situation, as it does allow some firms to be less efficient than the bankruptcy

frontier. For example, this could happen when firms are about to go out of business

surviving through bank loans or companies that are sacrificing efficiency in the present

to implement innovations in order to be more efficient in the future.

13



2.4 Estimation theory

We now give results for the asymptotic distribution of the maximum likelihood estimator

of µ and show that it collapses to the classical case if µ0 > 0 and γ → ∞. Moreover, we

can also give the results for µ0 < 0, which differ slightly from the classical case.

Suppose we have observations w1, . . . , wn, and assume for simplicity that all parame-

ters are known except µ. The log-likelihood function is given by

logL(µ) =
n∑

i=1

log
{
Gg+(−wi + a(µ)) + (1−G)g+(wi − a(µ))

}

Let the true parameter be µ0. The MLE is defined as

µ̂ = argmax logL(µ).

We have the following assumptions:

(A1) Let the parameter space Θ be an open subset of R, and the true parameter µ0 6= 0.

(A2) γ = Cnν for some positive constants C and ν, so that limn→∞Gγ(µ) = I(µ > 0).

(A3) The function hµ(u) defined by (16)-(20) is twice continuously differentiable with

respect to µ in an open neighborhood of µ0.

Assumption (A1) avoids a singularity issue arising if the true µ0 is equal to zero. This

is a well known problem in classical SFM when using, for example, likelihood ratio tests of

the hypothesis µ0 = 0, which has a non-standard distribution, see Lee (1993). Assumption

(A2) ensures that asymptotically, we recover the classical SFM if µ0 > 0. Finally, (A3) is

a technical condition to have a well-defined asymptotic variance. The following theorem

gives the asymptotic normality of the maximum likelihood estimator of µ.

Theorem 1 Under our assumptions,

√
n(µ̂− µ0) →d N(0, B(µ0)) (29)

where

B(µ0) = limE
1

n

(
∂ logL(µ)

∂µ

∣∣∣∣
µ0

)2

= E

[(
g+′(−wi)

g+(−wi)

)2
]
I(µ0 > 0) + 4E

[(
g+′(wi − 2µ0)

g+(wi − 2µ0)

)2
]
I(µ0 < 0)

with ′ denoting first derivative w.r.t. µ.
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The asymptotic variance B(µ0) is decomposed into two terms, the first one being well

known from classical SFM, and the second one being relevant if the true parameter is

negative. Note that B(µ0) is continuously differentiable except at µ0 = 0. Therefore,

classical likelihood-based tests such as likelihood ratio will face the same issues as in

classical SFM, but similar remedies as in Lee (1993) can be established. Rather than

imposing (A2), we could alternatively keep γ finite, which guarantees a smooth transition

between the two components of the asymptotic variance, and classical tests would have

standard distributions. However, we prefer to impose γ → ∞ to recover the classical SFM

asymptotically and to emphasize that the objective of our generalized model is mainly to

deal with finite sample problems.

3 A simulation study

In this section we present the results of a Monte Carlo study to compare the behavior

of our proposed model compared with the classical stochastic frontier model. We do

this for the normal-exponential and the normal-half normal model. We are interested in

how the models estimate the model parameters and average technical efficiency in small

samples when it is likely to observe a sample that is characterized by the “wrong skewness”

problem. Our data generating process allows for two production factors and is given by

Yi = α0 + α1 logX1i + α2 logX2i + Vi − Ui, (30)

where Vi ∼ N(0, σ2
v), Ui ∼ exp(µu) or Ui ∼ N+(0, µu

√
π/2) , logX1i ∼ N(1.5, 0.3) and

logX2i ∼ N(1.8, 0.3). The true parameters are α0 = 0.9, α1 = 0.6, α2 = 0.5. We let µ

take on the values 0.2, 0.3, and 0.4 corresponding to varying degrees of average technical

efficiency. The standard deviation of the two-sided error σv is chosen as σv = 0.5 for the

normal-exponential model and σv = 0.25 for the normal-half normal model. Different

values are chosen to ensure that a reasonable fraction of the samples has positive and

negative skewness of the composite error. We consider the sample sizes N = 50, 100, 200

and let the smoothing parameter γ increase with the sample size taking on the values

γ = 30, 40, 50.2 We report bias and MSE for the parameter estimates, as well as for

technical efficiency defined as TE = E(exp(−U + a(µ))) = E(E(exp(−U + a(µ))|W ))

(true values obtained by simulation) computed as described in Section 2.2 and estimated

2We also used different values for γ. Mostly, the results are robust w.r.t. this choice as long as γ is

not too small. If the function G is too smooth, however, biased estimates can occur.
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as n−1
∑n

i=1 Ê(exp(−Ui+a(µ̂)|Wi). We also report the fraction of samples having positive

skewness (row: “pos. skew.”). Results for “One-sided” refer to the standard stochastic

frontier model and for “Two-sided” to the extended version. The number of Monte Carlo

replications was equal to 1000.

The results are reported in Tables 1 to 4. First of all note that the results for the

normal-exponential model and the normal-half normal model do not differ qualitatively.

Looking at the bias for µ it is apparent that the two-sided model has a much larger bias,

but that does not come as a surprise. The reason is that whenever the sample skewness of

the residuals is positive, µ is estimated to be negative, so naturally the bias is inflated by

this. The bias for σv is also a bit larger for our model. On the other hand, the intercept

α0 is estimated with a smaller bias for our model. For the remaining parameters the

bias for the two-sided model is of similar size or smaller than for the one-sided model.

The advantage of our approach becomes apparent when looking at the bias for technical

efficiency, which is always smaller for the two-sided model due to the fact that the classical

model cannot handle positive skewness and estimates technical efficiency to be equal to

one in these cases. Note that as µ and the sample size increase, the fraction of samples

with positive skewness becomes smaller and approaches zero. In these cases the two

models basically give identical estimates. In terms of MSE, again both models perform

equally well for most parameters, notably also for σv for which the bias was larger for

our model. For technical efficiency, however, the MSE of the two-sided model is always

smaller. Thus we can conclude that our approach yields reliable estimates for the model

parameters without suffering from some of the drawbacks of the classical model when the

residuals have positive skewness.

4 Application

We illustrate the advantages of our model for estimating technical efficiency using data

from the NBER manufacturing productivity database (Bartelsman and Gray 1996). This

database contains annual information on US manufacturing industries and contains data

since 1958. Output is measured as total value added and as input factors we use total

employment, cost of materials, energy cost and capital stock. In particular, we consider

54 sub-sectors from the textile industry over the years 1958-2005. We proceed by consec-

utively estimating the model on the cross-sectional data for each year. As a starting point

the model is estimated by OLS to analyze the signs of the skewness of the residuals. It
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Table 1: Bias normal-exponential model

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.2 -0.0475 -0.1403 -0.0478 -0.1217 -0.0422 -0.0968

σv = 0.5 -0.0257 -0.0615 -0.0105 -0.0316 -0.0048 -0.0174

α0 = 0.9 -0.0418 0.0470 -0.0498 0.0225 -0.0404 0.0148

α1 = 0.6 -0.0050 -0.0051 -0.0055 -0.0049 -0.0023 -0.0023

α2 = 0.5 0.0018 0.0018 0.0033 0.0032 0.0004 0.0006

TE=0.8333 0.0489 -0.0247 0.0467 -0.0141 0.0405 -0.0064

Pos. skew. 0.411 0.359 0.304

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.3 -0.0813 -0.1497 -0.0665 -0.1058 -0.0438 -0.0625

σv = 0.5 -0.0194 -0.0452 -0.0024 -0.0136 0.0022 -0.0023

α0 = 0.9 -0.0910 -0.0269 -0.0760 -0.0368 -0.0484 -0.0284

α1 = 0.6 0.0021 0.0025 0.0054 0.0052 0.0040 0.0042

α2 = 0.5 0.0042 0.0047 0.0021 0.0023 -0.0016 -0.0016

TE=0.7692 0.0684 0.0143 0.0547 0.0223 0.0356 0.0185

Pos. skew. 0.304 0.198 0.113

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.4 -0.0720 -0.1096 -0.0531 -0.0698 -0.0204 -0.0238

σv = 0.5 -0.0238 -0.0396 -0.0031 -0.0085 -0.0042 -0.0048

α0 = 0.9 -0.0794 -0.0389 -0.0613 -0.0422 -0.0210 -0.0181

α1 = 0.6 0.0069 0.0069 0.0060 0.0061 -0.0020 -0.0019

α2 = 0.5 0.0000 -0.0002 0.0005 0.0007 0.0022 0.0023

TE=0.7143 0.0569 0.0254 0.0412 0.0252 0.0158 0.0131

Pos. skew. 0.172 0.095 0.022

Note: This table presents Monte Carlo estimates of the bias for the parameter estimates

for the model given in (30) with one-sided errors coming from an exponential distribution.

The columns labeled “one-sided” refer to the classical stochastic frontier model, whereas

“two-sided” refers to the model introduced in Section 2.1. The entry “Pos. skew” is the

fraction of samples that are characterized by the wrong skewness problem. The smoothing

parameter γ was chosen to be 30, 40 and 50 for sample sizes 50, 100 and 200, respectively.

The results are based on 1000 Monte Carlo replications.
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Table 2: MSE normal-exponential model

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.2 0.0297 0.0949 0.0220 0.0699 0.0176 0.0511

σv = 0.5 0.0092 0.0121 0.0039 0.0042 0.0023 0.0021

α0 = 0.9 0.1673 0.1639 0.0806 0.0727 0.0484 0.0377

α1 = 0.6 0.0225 0.0232 0.0097 0.0097 0.0048 0.0048

α2 = 0.5 0.0210 0.0220 0.0100 0.0102 0.0048 0.0048

TE 0.0174 0.0111 0.0131 0.0050 0.0108 0.0033

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.3 0.0464 0.108 0.0293 0.0629 0.0181 0.0337

σv = 0.5 0.0125 0.0127 0.0055 0.0049 0.0028 0.0024

α0 = 0.9 0.2111 0.2010 0.1032 0.0906 0.0529 0.0450

α1 = 0.6 0.0263 0.0272 0.0122 0.0122 0.0054 0.0054

α2 = 0.5 0.0275 0.0282 0.0117 0.0117 0.0058 0.0058

TE 0.0250 0.0138 0.0150 0.0064 0.0092 0.0042

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.4 0.0560 0.1006 0.0325 0.0510 0.0129 0.0161

σv = 0.5 0.0163 0.0154 0.007 0.0063 0.0034 0.0033

α0 = 0.9 0.2315 0.2168 0.1147 0.1055 0.0550 0.0534

α1 = 0.6 0.0291 0.0300 0.0133 0.0135 0.0066 0.0066

α2 = 0.5 0.0288 0.0291 0.0131 0.0132 0.0068 0.0068

TE 0.0252 0.0152 0.0133 0.0073 0.0047 0.0036

Note: This table presents Monte Carlo estimates of the mean squared error for the pa-

rameter estimates for the model given in (30) with one-sided errors coming from an ex-

ponential distribution. The columns labeled “one-sided” refer to the classical stochastic

frontier model, whereas “two-sided” refers to the model introduced in Section 2.1. The

smoothing parameter γ was chosen to be 30, 40 and 50 for sample sizes 50, 100 and 200,

respectively. The results are based on 1000 Monte Carlo replications.
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Table 3: Bias normal-half normal model

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.2 -0.0369 -0.1225 -0.0345 -0.0919 -0.0374 -0.0755

σv = 0.25 -0.0269 -0.0561 -0.0122 -0.0274 -0.0025 -0.0108

α0 = 0.9 -0.0387 0.0345 -0.0342 0.0204 -0.0373 -0.0007

α1 = 0.6 0.0001 -0.0001 -0.0008 -0.0008 0.0005 0.0005

α2 = 0.5 0.0004 0.0013 0.0010 0.0010 -0.0008 -0.0008

TE=0.8278 0.0399 -0.0226 0.0354 -0.0117 0.0351 0.0032

Pos. skew. 0.377 0.309 0.238

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.3 -0.0529 -0.1090 -0.0372 -0.0620 -0.0185 -0.0246

σv = 0.25 -0.0266 -0.0434 -0.0086 -0.0148 -0.0042 -0.0053

α0 = 0.9 -0.0535 -0.0040 -0.0334 -0.0106 -0.0146 -0.0091

α1 = 0.6 0.0018 0.0012 0.0000 -0.0003 -0.0010 -0.0010

α2 = 0.5 -0.0011 -0.0003 -0.0020 -0.0021 -0.0011 -0.0011

TE=0.7586 0.0486 0.0074 0.0326 0.0138 0.0161 0.0113

Pos. skew. 0.229 0.126 0.044

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.4 -0.0434 -0.0794 -0.0247 -0.0321 -0.0082 -0.0089

σv = 0.25 -0.0333 -0.0368 -0.0094 -0.0102 -0.0048 -0.0046

α0 = 0.9 -0.0394 -0.0151 -0.0141 -0.0089 -0.0145 -0.0148

α1 = 0.6 -0.0005 -0.0013 -0.0010 -0.0010 -0.0008 -0.0008

α2 = 0.5 -0.0009 -0.0011 -0.0039 -0.0041 0.0032 0.0032

TE=0.6988 0.0387 0.0195 0.0199 0.0158 0.0060 0.0062

Pos. skew. 0.121 0.033 0.002

Note: This table presents Monte Carlo estimates of the bias for the parameter estimates

for the model given in (30) with one-sided errors coming from a half-normal distribution.

The columns labeled “one-sided” refer to the classical stochastic frontier model, whereas

“two-sided” refers to the model introduced in Section 2.1. The entry “Pos. skew” is the

fraction of samples that are characterized by the wrong skewness problem. The smoothing

parameter γ was chosen to be 30, 40 and 50 for sample sizes 50, 100 and 200, respectively.

The results are based on 1000 Monte Carlo replications.
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Table 4: MSE normal-half normal model

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.2 0.0234 0.0794 0.0174 0.0526 0.0129 0.0354

σv = 0.25 0.0072 0.0077 0.0028 0.0027 0.0014 0.0011

α0 = 0.9 0.0634 0.0530 0.0330 0.0245 0.0221 0.0144

α1 = 0.6 0.0068 0.0071 0.0029 0.0029 0.0015 0.0015

α2 = 0.5 0.0069 0.0071 0.0031 0.0031 0.0015 0.0015

TE 0.0152 0.0085 0.0118 0.0044 0.0089 0.0034

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.3 0.0301 0.0797 0.0182 0.0388 0.0084 0.0131

σv = 0.25 0.0103 0.0083 0.0041 0.0035 0.0018 0.0017

α0 = 0.9 0.0856 0.0715 0.0387 0.0327 0.0183 0.0162

α1 = 0.6 0.0095 0.0096 0.0038 0.0038 0.0020 0.0020

α2 = 0.5 0.0091 0.0092 0.0039 0.0039 0.0019 0.0019

TE 0.0175 0.0081 0.0105 0.0054 0.0046 0.0031

N=50 N=100 N=200

One-sided Two-sided One-sided Two-sided One-sided Two-sided

µu = 0.4 0.0330 0.0688 0.0150 0.0219 0.0043 0.0046

σv = 0.25 0.0146 0.0110 0.0049 0.0045 0.0019 0.0019

α0 = 0.9 0.1011 0.0961 0.0416 0.0395 0.0177 0.0181

α1 = 0.6 0.0129 0.0126 0.0055 0.0055 0.0025 0.0025

α2 = 0.5 0.0115 0.0114 0.0050 0.0050 0.0023 0.0023

TE 0.0162 0.0101 0.0069 0.0053 0.0016 0.0016

Note: This table presents Monte Carlo estimates of the mean squared error for the parame-

ter estimates for the model given in (30) with one-sided errors coming from a half-normal

distribution. The columns labeled “one-sided” refer to the classical stochastic frontier

model, whereas “two-sided” refers to the model introduced in Section 2.1. The smoothing

parameter γ was chosen to be 30, 40 and 50 for sample sizes 50, 100 and 200, respectively.

The results are based on 1000 Monte Carlo replications.
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turns out that for a large number of years the OLS residuals have positive skewness. Thus,

relying solely on the classical stochastic frontier model with exponential or half-normal

inefficiencies one would not find any inefficiencies for the corresponding years. This seems

highly unreasonable and our extended model is considered to be able to estimate technical

efficiency in such cases.

Concerning the choice of the smoothing parameter γ we proceed as follows. We allow γ

to take finite (possibly small) values by searching over the grid (3,5,8,10,20,50,100,500,1000)

and selecting the value that gives the highest log-likelihood.3 It turned out that generally

very large values of γ are optimal. Especially in cases where the skewness has the expected

sign the estimates from the classical and the extended model cannot be distinguished.

We consider the models with exponential and half-normal distribution for the ineffi-

ciency terms. For each year we estimate the classical stochastic frontier model and our

extended model. For 18 out of the 47 years the skewness of the OLS residuals is positive,

in which case the classical model estimates the absence of technical inefficiency for all in-

dustries. Detailed estimation results are not reported, but are available from the authors

upon request. Based on the estimated models we compute the average technical efficiency

for each year. Figures 5 and 6 show plots of the estimated technical efficiencies over time

for the exponential and half-normal model, respectively. In both cases the results for

the years characterized by “wrong skewness” are much more reasonable for the extended

models. In fact, the estimates for technical efficiency appear relatively stable over time.

Along the lines of our arguments in Section 2.3 above, there are two possible expla-

nations for our findings. The first is that the classical stochastic frontier model is indeed

a reasonable approximation for the data generating process, but that by chance we ob-

serve the “wrong skewness” in a number of years. This is likely to happen for samples of

such a small size. The second explanation could be that changes in the industry due to

competition from abroad and changes in technology have led to an adaptation of firms.

Periods with wrong skewness may represent times when some firms have already adapted,

whereas others are still in the process of adapting to the new conditions.

3In principle one could estimate γ by MLE, but the likelihood function is very flat w.r.t. γ and it is

therefore generally difficult to estimate.
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Figure 5: Technical efficiency estimated by the normal-exponential

stochastic frontier model (solid line) and our extended model (dashed

line) for the years 1958-2005.
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Figure 6: Technical efficiency estimated by the normal-half normal

stochastic frontier model (solid line) and our extended model (dashed

line) for the years 1958-2005.
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5 Conclusions

In traditional SFA models, the “wrong skewness” problem is not a small issue because

first, it plagues the estimation of the inefficiencies and second because researchers will

often be tempted to change their model until they will observe the expected skewness.

Classical inference assumes that the model specification is chosen independently of any

estimates that are obtained. Specification-searching introduces problems of bias in both

parameter estimates as well as variance-covariance estimates and we know from various

simulation studies that the wrong skewness may appear even when the model is correctly

specified.

Previous approaches to handle this issue involve the choice of densities for the efficien-

cies that are bounded below (by zero) and above. These approaches have their own merits

but also some drawbacks. They restrict a priori the admissible range for the efficiency,

which is rather unusual in this literature and these models do not nest the traditional

SFA models.

Our approach extends the SFA model, allowing to disentangle inefficiency and skew-

ness and nesting, as a particular case, the traditional SFA model. The asymptotic theory

indicates that we obtain the usual properties of MLE estimators. Our Monte-Carlo ex-

periments show also that we have better estimates of the technical efficiencies than the

traditional SFA model, even with data generated under the latter. So the model we

propose enriches the toolbox of the researcher for investigating efficiency analysis with

parametric SFA models.
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Appendix

Proof of Lemma 1.

To show (23), note that if U has density given by (15), then −U has density given by

fµ(u) = hµ(u) {Gγ(µ)I(u < 0) + (1−Gγ(µ))I(u ≥ 0)}

Denote φσv
(z) = 1

σv
φ( z

σv
). The density of V −U is given by the convolution of the densities

of −U and V ,

(f ∗ φσv
)(z) =

∫ ∞

−∞
f(u)φσv

(z − u)du

=
1

σv

∫ 0

−∞
f(u)φσv

(z − u)du+

∫ ∞

0

f(u)φσv
(z − u)du

= Gγ(µ)

∫ 0

−∞
hµ(u)φσv

(z − u)du+ (1−Gγ(µ))

∫ ∞

0

hµ(u)φσv
(z − u)du

= Gγ(µ)

∫ ∞

0

hµ(u)φσv
(−z − u)du+ (1−Gγ(µ))

∫ ∞

0

hµ(u)φσv
(z − u)du

= Gγ(µ)g
+(−z) + (1−Gγ(µ))g

+(z)

The density of W is then given by g(w) = (f ∗ φσv
)(w − a(µ)), where a(µ) is the third

term in (13), which only depends on µ. 2

Proof of Theorem 1.

We have to check the following conditions:

(C1) ∂2 logL(µ)
∂µ2 <∞ and is continuous in an open, convex neighborhood of µ0.

(C2) 1
n

∂2 logL(µ)
∂µ2

∣∣∣
µ∗

→p A(µ0) = limE 1
n

∂2 logL(µ)
∂µ2

∣∣∣
µ0

, for any sequence µ∗ such that µ∗ →p

µ.

(C3) 1√
n

∂ logL(µ)
∂µ

∣∣∣
µ0

→d N(0, B(µ0))
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Let G = Gγ(µ). We have

∂ logL(µ)

∂µ
=

n∑

i=1

g′i
gi

= G′
n∑

i=1

g+(−wi + a(µ))− g+(wi − a(µ))

gi

+ G

n∑

i=1

∂g+(−wi + a(µ))/∂µ

gi

+ (1−G)

n∑

i=1

∂g+′(wi − a(µ))/∂µ

gi

where gi = Gg+(−wi + a(µ)) + (1−G)g+(wi − a(µ)) and

g′i = ∂gi/∂µ = G′{g+(−zi)− g+(zi)}+ a′(µ){Gg+′(−zi)− (1−G)g+′(zi)},

with zi = wi−a(µ). The first term is negligible as G′(µ0) converges to zero exponentially.

If µ0 > 0, then the third term is negligible as 1 −G(µ0) converges to zero exponentially.

In the second term, G converges to one exponentially and lim ∂g+(−wi + a(µ))/∂µ =

g+′(−wi). Hence, it suffices to show a Lindeberg-Levy CLT for 1√
n

∑n
i=1

g+′(−wi)
gi

. If µ0 < 0,

then the second term converges to zero, lim ∂g+(wi−a(µ))/∂µ = lim g+′(wi−a(µ))a′(µ) =
2g+′(wi−2µ) and a CLT is established for the term 2√

n

∑n
i=1

g+′(wi−2µ)
gi

, which shows (C3).

Furthermore,

∂2 logL(µ)

∂µ2
=

n∑

i=1

g′′i
gi

−
(
g′i
gi

)2

(31)

where

g′′i = G′′{g+(−zi)− g+(zi)}+ 2G′a′(µ){g+′(zi)− g+′(−zi)}
+ a′(µ)2{Gg+′′(−zi) + (1−G)g+′′(zi)}+ a′′(µ){Gg+′(−zi)− (1−G)g+′(zi)},

and zi = wi−a(µ), which shows that, using assumption (A3), (31) is finite and continuous

in an open, convex neighborhood of µ0, and hence condition (C1) is satisfied.

Next, note that E[g′′i /gi] =
∫
g′′i dz = ∂2/∂µ2

∫
gidz = 0, so that n−1

∑n

i=1 g
′′
i /gi −

(g′i/gi)
2 converges in probability, uniformly in an open neighborhood of µ0, to

−E[(∂ log g+(−wi)/∂µ)
2
] if µ0 > 0, and to −4E[(∂ log g+(wi − 2µ0)/∂µ)

2
] if µ0 < 0,

since limn→∞ a(µ) = 2µI(µ < 0). Thus, A(µ0) = −B(µ0), and condition (C2) holds by

Theorem 4.1.5 of Amemiya (1985). Finally, (C1), (C2) and (C3) imply (29) by Theorem

4.1.3. of Amemiya (1985). 2
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