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1. INTRODUCTION

ROC curves are a very useful instrument to measure how well a variable
or a diagnostic test is able to distinguish two populations from each other. It is
therefore an essential element in the classification and discrimination literature,
and it has interested and still interests many statisticians from a theoretical as
well as from an applied point of view.

When covariates are present, it might be advisable to incorporate them
in the ROC curve in order to make use of the additional information. In fact,
in many situations the performance of a diagnostic test and, by extension, its
discriminatory capacity can be affected by covariates. Pepe [30][pp 48–49] pro-
vides several examples of covariates that can affect a test result. For instance,
patient characteristics, such as age and gender, are important covariates to be
considered. Furthermore, where a diagnostic test is performed by a tester (e.g.,
a radiologist engaged in interpreting images), a characteristic of the tester, such
as experience or expertise, will often affect the test result. The incorporation
of covariates into the ROC curve might be done for two purposes: (a) obtain
covariate-specific ROC curves, or ROC curves that condition on a specific value
of a covariate vector; and (b) get some kind of average ROC-curve, or covariate-
adjusted ROC curve, which takes the covariate information of each data point
into account in order to obtain a better measure of the discriminatory capacity
than the rude ‘marginal’ or ‘pooled’ ROC curve.

In this paper we first explain in Section 2 why it is important to take
covariate information into account by giving some concrete examples of situa-
tions where the covariates have an impact on the performance of the diagnostic
test and/or its discriminatory capacity. We next consider in Section 3 both the
covariate-specific and the covariate-adjusted ROC curve, and we give an overview
of estimation methods that have been proposed for both concepts in Section 4.
The focus lies on reviewing the literature and not on giving detailed derivations
or lengthy discussions. They can be found in the respective papers. For reasons
of brevity, we mostly focus on nonparametric approaches, although some para-
metric and semiparametric methods are also discussed. In Section 5 we analyze
endocrinological data on the body mass index to illustrate the methodology. Fi-
nally, in Section 6 we mention some research topics that need further investigation
or that are still unexplored.

2. MOTIVATION

This section is devoted to motivating the need for incorporating covariates
into the ROC analysis by means of illustrating the consequences that ignoring
such information may have on the practical conclusions drawn from the study at
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hand. In brief, there are two different scenarios on which covariate information
will have to be incorporated into the ROC analysis: (a) when the performance of
the diagnostic test is affected by covariates, but not its discriminatory capacity;
and, (b) when the discriminatory capacity itself is affected. A good overview of
this aspect can be found in Janes and Pepe [18, 19] and in fact, the examples
given here are partially based on both papers. For a more detailed review of the
subject, readers are urged to consult these references.

On the one hand, let us start with those situations in which the performance
of the diagnostic test is affected by covariates, even where the discriminatory ca-
pacity of the test is unaffected. This situation is depicted in Figure 1(a), in which
a covariate X (e.g., patient gender) affects the result but not the discriminatory
capacity of diagnostic test Y . In other words, the separation between the con-
ditional distributions of the diagnostic test result in both healthy and diseased
populations is the same, irrespective of the values of covariate X. In Figure 1(b),
covariate X is independent of disease status, which will be denoted by D (dis-
eased) and D̄ (healthy), i.e., the result of the diagnostic test changes according
to the gender of the patient but the prevalence of the disease is the same for
both genders. In such a case, when data are pooled regardless of the gender of
the patient, the obtained ROC is attenuated with respect to the ROC curve in
each of the populations determined by covariate X. However, if covariate X is
associated with disease status, the pooled ROC curve will also ‘incorporate’ the
portion of discrimination attributable to the covariate. This situation can lead
to a pooled (or marginal) ROC curve that lies above or below the conditional
ROC curve (see Figures 1(c) and 1(d)). It should be noted that, despite the fact
that in the previous examples the discriminatory capacity of the diagnostic test
is the same for both populations defined by covariate X, the threshold that gives
rise to a pair of values for the FPF (false positive fraction) and the TPF (true
positive fraction) could not coincide in each population. This is also illustrated
in Figure 1. The red lines and dots represent a common threshold used to define
test positivity. As can be observed, this threshold provides a different pair of
FPF and TPF on X = 1 and X = 0, as well as on the pooled data. On the
other hand, the green lines and dots depict the threshold to be used to ensure
a FPF = 0.2 in both populations. Accordingly, studying the effect of covariates
on the distribution of a diagnostic test in the healthy/diseased population will
enable assessment of which factors affect the FPF/TPF when a specific threshold
value is set. Conversely, different threshold values can be chosen for each of the
populations determined by the covariates, in order to ensure that the FPF/TPF
remains constant across all of them.

On the other hand, in those situations where the accuracy of a diagnostic
test is affected by covariates, failure to incorporate information furnished by them
may lead, as in the previous cases, to erroneous conclusions. For instance, let us
consider the example shown in Figure 2, where the accuracy of a diagnostic test
changes according to a binary covariate X (with X again assumed to be patient
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gender). The conditional ROC curve shows that test Y is more accurate when
X = 1 than when X = 0, though discriminatory capacity is high in both cases.
Nevertheless, pooling the data regardless of the values of the covariate yields a
ROC curve that is below the specific ROC curves for each of the populations
determined by covariate X. Taking into account the possible modifying effect of
covariates on the accuracy of a diagnostic test, i.e., on the ROC curve, will help
identifying the optimal populations to whom or conditions under which the test
should be applied, or alternatively, those where the test is unlikely to be useful.
Furthermore, different thresholds for defining test positivity can be chosen to
vary with covariate values.

Summarising, both in situations where the result of a diagnostic test,
though not necessarily its discriminatory capacity, is affected by covariates, and
in those where the discriminatory capacity itself is affected by covariates, this
information must be incorporated into the ROC analysis. Failure to do so, by
pooling the data regardless of the values of the covariates and using a classifica-
tion rule that relies on a common threshold value, will result in the test having a
discriminatory capacity that is biased compared to its ‘true potential’ discrimina-
tory capacity. Accordingly, optimistic or pessimistic results may be obtained and,
by extension, erroneous conclusions with respect to the real discriminatory capac-
ity of the diagnostic test, which in turn entails an ‘incorrect’ choice of threshold
values to be used in practice.

The previous explanations motivate two possibilities when estimating ROC
curves under the presence of covariates. If the discriminatory capacity of the di-
agnostic test is affected by covariates, then conditional or covariate-specific ROC
curves must be considered. When the test diagnostic varies with the covari-
ates, but its discriminatory capacity is not affected by them, then the covariate-
adjusted ROC curve, introduced by Janes and Pepe [19], is recommended. Both
concepts will be defined in the next Section.

3. NOTATION AND DEFINITIONS

Let us assume that along with the continuous diagnostic variables in the
diseased population, YD, and in the healthy population, YD̄, covariate vectorsXD

and XD̄ are also available. For the sake of clarity, in this paper we will further
assume that the covariates of interest are the same in both healthy and diseased
populations. It should be noted, however, that this is not always so. In some
circumstances, it could be of interest to evaluate the discriminatory capacity of
a diagnostic test with respect to population-specific covariates, as for instance
disease stage.

As a natural extension of the ROC curve for continuous diagnostic tests,
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the conditional or covariate-specific ROC curve, given a covariate value x, is
defined as

(3.1) rocx(p) = 1− FD(F−1
D̄

(1− p | x) | x), 0 ≤ p ≤ 1,

where
FD(y | x) = P (YD ≤ y |XD = x) ,

FD̄(y | x) = P (YD̄ ≤ y |XD̄ = x) .

Note that in this case, a number of possible different ROC curves can be ob-
tained for each value x in the range of the common part of the supports of XD

and XD̄. Associated with the conditional ROC curve, some other measures of
discriminatory performance can also be defined. The most widely used one is
the area under the ROC curve (AUC), which in the conditional case is defined
as aucx =

∫ 1
0 rocx(p) dp. As for the unconditional case, the aucx takes values

between 0.5 (for an uninformative test) and 1 (for a perfect test).

Both, the conditional ROC curve and the conditional AUC defined above,
depict the discriminatory capacity of a test but for specific values of the covariate
vector. It would nevertheless be of great interest to have global discriminatory
measures that also take into account covariate information. In this context, the
so-called covariate-adjusted ROC curve is defined as an average of conditional
ROC curves weighted according to the distribution of the covariate in the diseased
population, that is

(3.2) aroc(p) =

∫
rocx(p)dHD(x),

were HD(x) = P (XD ≤ x) is the multivariate distribution function of the vec-
tor XD. Despite of the intuitive definition given in the expression above, the
covariate-adjusted ROC curve admits other equivalent representations. For in-
stance, in Janes and Pepe [19] it is also expressed as

(3.3) aroc(p) = P
(
YD > F−1

D̄
(1− p |XD)

)
,

which means that the covariate-adjusted ROC curve for a FPF = p can be seen
as the overall TPF when the threshold used to define test positivity is covariate-
specific. This latter expression will be useful when it comes to construct esti-
mators for aroc(p). Note that based on (3.2), in those situations where the
accuracy of a diagnostic test is not affected by covariates, the covariate-adjusted
ROC curve coincides with the covariate-specific ROC curve which is common for
all covariate values.

4. ESTIMATION PROCEDURES

In order to introduce the estimators, let us assume that we have two inde-
pendent samples of i.i.d. observations (XD̄1, YD̄1), . . . , (XD̄nD̄

, YD̄nD̄
) from pop-

ulation (XD̄, YD̄) and (XD1, YD1), . . . ,(XDnD
, YDnD

) from population (XD, YD).
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Some of the estimators that will be presented below only apply for one-dimensional
covariates. However, by a slight abuse of notation, even in those cases we will
keep the bold typography to denote the covariates.

4.1. Estimation of the conditional ROC curve

Several proposals for estimating the conditional ROC curve have been given
in the statistical literature. Estimators can immediately be obtained by estimat-
ing the conditional distribution functions involved in the definition given in (3.1).
Besides, other approaches within the general regression framework have been
studied, namely the so-called induced and direct ROC-regression methodologies
(see, e.g., Pepe [28, 30], Rodŕıguez-Álvarez et al. [35]). In this section, we will first
present the general ideas behind both approaches, and then focus our attention
on nonparametric estimation techniques.

Estimators based on conditional distribution functions. An obvious esti-
mator of the conditional ROC curve follows directly from its definition. Given a
covariate value, x, the estimator can be constructed as

(4.1) r̂ocx(p) = 1− F̂D(F̂−1
D̄

(1− p | x) | x),

where F̂D(· | x) and F̂D̄(· | x) are estimators of the conditional distributions
FD(· | x) and FD̄(· | x), respectively. When we restrict our attention to one-
dimensional covariates, the conditional distributions can be estimated nonpara-
metrically, for instance, by kernel-based estimators given in Stone [36]:

F̂j,hj
(y | x) =

∑nj

i=1 k
(
x−Xji

hj

)
I(Yji ≤ y)∑nj

i=1 k
(
x−Xji

hj

) ,

with j ∈ {D̄,D}, where I(·) denotes the indicator function and where k is the
kernel (usually a symmetric density) and hD and hD̄ are the smoothing param-
eters. Under this approach, the estimator of the conditional ROC curve at a
specific covariate value uses the information corresponding to individuals whose
covariate values are close to x.

The estimator given in (4.1) is of an empirical type, and therefore has dis-
continuities. In López-de-Ullibarri et al. [22] a nonparametric smooth estimator
of the conditional ROC curve is obtained by applying the methodology that Peng
and Zhou [26] proposed in the unconditional case. The key idea of this method
consists of smoothing the empirical ROC curve by means of kernel techniques.
In the conditional case, the smoothed version of (4.1) given in [22] is

(4.2) r̂ocx,h(p) = 1−
∫
F̂D,hD

(F̂−1
D̄,hD̄

(1− p+ hu | x) | x)k(u)du,
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where the parameter h controls the amount of smoothing and k is a kernel func-
tion. The authors propose a bootstrap method to choose the smoothing param-
eters involved in (4.1) and (4.2).

Very recently, Inácio de Carvalho et al. [16] present a nonparametric Bayesian
model to estimate the conditional distribution functions involved in (3.1). The
main advantage of their approach, in contrast to the proposal of López-de-
Ullibarri et al. [22], is the possibility of studying the effect of multidimensional
covariates. Specifically, covariate-dependent Dirichlet processes (DDP) [23] de-
fined in terms of i.i.d. Gaussian processes are proposed to estimate FD(· | x) and
FD̄(· | x). Moreover, the computational burden associated with the proposal is
overcome by approximating the Gaussian processes by B-splines basis functions,
yielding the so-called B-splines DDP mixture model. The authors show by means
of simulation the better performance of the proposed model in complex scenar-
ios when compared to other nonparametric estimators of the conditional ROC
curve [10, 33].

Estimators based on induced-regression methodology. An alternative way
to incorporate information from covariates to the ROC analysis is through regres-
sion models. The induced methodology in ROC analysis consists of modelling
the effect of the covariates through regression models linking the classification
variable and the covariates in each population separately. The regression models
will then be used to compose the conditional ROC curve. In a general frame-
work, the relationship between the covariate and the classification variable in
each population is given by location-scale regression models

YD̄ = µD̄(XD̄) + σD̄(XD̄)εD̄,(4.3)

YD = µD(XD) + σD(XD)εD,(4.4)

where, for j ∈ {D̄,D}, µj(x) = E(Yj |Xj = x) and σ2
j (x) = V ar(Yj |Xj = x) are

the conditional mean and the conditional variance of Yj given Xj = x, respec-
tively, and the error εj is independent of the covariate Xj . The independence
between the error and the covariate in the location-scale regression model allows
us to rewrite the conditional distribution function of the classification variable in
terms of the distribution of the regression error as follows:

Fj(y | x) = P (Yj ≤ y |Xj = x)

= P (µj(Xj) + σj(Xj)εj ≤ y |Xj = x)

= P

(
εj ≤

y − µj(x)

σj(x)

)
= Gj

(
y − µj(x)

σj(x)

)
,

where, for j ∈ {D̄,D}, Gj(y) = P (εj ≤ y) is the distribution function of the
regression error. An analogous relationship can be established between the con-
ditional quantile function of Yj given Xj = x, F−1

j (· | x), and the quantile func-

tion of εj , G
−1
j (·), through the expression F−1

j (p | x) = µj(x) + σj(x)G−1
j (p).

Therefore, for a fixed covariate value x, and for 0 < p < 1, the conditional ROC
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curve can be expressed as

rocx(p) = 1− FD(F−1
D̄

(1− p | x) | x)(4.5)

= 1− FD

(
µD̄(x) + σD̄(x)G−1

D̄
(1− p) | x

)
= 1−GD

(
µD̄(x) + σD̄(x)G−1

D̄
(1− p)− µD(x)

σD(x)

)
= 1−GD

(
G−1

D̄
(1− p)b(x)− a(x)

)
,

where a(x) = (µD(x)− µD̄(x))/σD(x) and b(x) = σD̄(x)/σD(x). This formula-
tion allows us to express the conditional ROC curve in terms of the distribution
function and quantile function of regression errors, which are not conditional.
Hence, from an estimation point of view, instead of estimating the conditional
distribution of YD and YD̄ given x, one only needs to estimate the error distribu-
tion in each population. This is a main advantage with respect to the estimator
given in (4.2).

The induced ROC methodology described above has been presented for
the most general case. In fact, only particular cases have been addressed in the
literature. In a parametric or semiparametric framework, Faraggi [9] assumes an
additive parametric model for the conditional means, with homoscedastic vari-
ances and normal errors, in both healthy and diseased populations. Pepe [28]
relaxes the distributional assumptions by not assuming a known probability dis-
tribution for the error terms, although the same distribution is considered for
both populations. Zhou et al. [40] extend the model in [28] by allowing for
heteroscedasticity. Finally, Zheng and Heagerty [39] propose a semiparametric
estimator for the conditional ROC curve, in which the distribution of the error
terms is unknown and allowed to depend on the covariates, but, as in the previ-
ous articles, the effect of the covariates on the conditional means and variances
is modelled parametrically. Very recently, Rodŕıguez and Mart́ınez [32] present
a Bayesian semiparametric model, where the error terms are assumed to be nor-
mally distributed, but nonparametric specifications of the conditional means and
variances are allowed.

A different line of research has led to estimation in a fully nonparamatric
framework, although so far only one-dimensional covariates have been consid-
ered. We focus now on those approaches, introduced by González-Manteiga et
al. [10] and Rodŕıguez-Álvarez et al. [33]. When models (4.3) and (4.4) are non-
parametric, the estimator of the conditional ROC curve involves the following
steps. First, for j ∈ {D̄,D}, we need to estimate nonparametrically the loca-
tion and scale functions in the regression models, say µ̂j(x) and σ̂j(x) by means,
for example, of Nadaraya-Watson or local-linear estimators (see, for example,
Fan and Gijbels [8]). Then the distribution of the errors in the two regression
models are estimated by the corresponding empirical distribution function of the
estimated residuals, i.e., Ĝj(y) = n−1

j

∑nj

i=1 I(ε̂ji ≤ y), where, for j ∈ {D̄,D},
ε̂ji = (Yji − µ̂j(Xji))/σ̂j(Xji), i = 1, . . . , nj . Finally, given the covariate value
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x, an empirical estimator of the conditional ROC curve is

(4.6) r̂ocx(p) = 1− ĜD

(
Ĝ−1

D̄
(1− p)b̂(x)− â(x)

)
,

where â(x) = (µ̂D(x)− µ̂D̄(x))/σ̂D(x) and b̂(x) = σ̂D̄(x)/σ̂D(x). As in the case
of (4.1), the previous estimator of the conditional ROC curve is not continuous.
In order to obtain a smooth version, González-Manteiga et al. [10] also applied
the methodology in Peng and Zhou [26], which yields

(4.7) r̂ocx,h(p) = 1−
∫
ĜD

(
Ĝ−1

D̄
(1− p+ hu)b̂(x)− â(x)

)
k(u)du.

The authors show that the former estimator also admits the following explicit
expression:

r̂ocx,h(p) =
1

nD

nD∑
i=1

K

(
ĜD̄({ε̂Di + â(x)}/b̂(x))− 1 + p

h

)
,

where K is the distribution function corresponding to the density kernel k.

A detailed study of the asymptotic properties of the estimators given in
(4.6) and (4.7) is provided in González-Manteiga et al. [10]. In Rodŕıguez-Álvarez
et al. [33], a bootstrap-based test to check for the effect of the covariate over
the conditional ROC curve is proposed. Although both papers focus on the
estimation of the conditional ROC curve, an estimator of the conditional AUC
is also presented, âucx =

∫ 1
0 r̂ocx(p) dp, with the integral being approximated

by numerical integration methods. In that sense, the paper by Yao et al. [38]
goes one step further in proposing a nonparametric estimator for aucx based
also on induced modelling and local linear kernel smoothers. The authors exploit
the relation between the Mann-Whitney statistic and the empirical estimator of
the unconditional AUC (see, e.g, Bamber [2]) and propose a covariate-specific
Mann-Whitney estimator for aucx.

Estimators based on direct-regression methodology. In contrast to the
induced methodology, in the direct methodology the effect of the covariates is
directly evaluated on the ROC curve. To motivate the standard formulation of
direct methodology, let us re-express the conditional ROC curve as follows:

rocx(p) = 1− FD(F−1
D̄

(1− p | x) | x)

= 1− P
(
YD ≤ F−1

D̄
(1− p | x) |XD = x

)
= 1− P

(
FD̄(YD | x) ≤ 1− p |XD = x

)
= P

(
1− FD̄(YD | x) < p |XD = x

)
(4.8)

= E
[
I(1− FD̄(YD | x) < p) |XD = x

]
.(4.9)

As can be observed, the conditional ROC curve may be seen as: (a) the condi-
tional distribution function of the random variable 1− FD̄(YD | x) in expression
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(4.8), or (b) the conditional expected value of the binary variable I(1− FD̄(YD |
x) < p) in expression (4.9). The random variable 1 − FD̄(YD | x) is called
‘placement value’ in related literature (see, for example, [11]) and represents the
standardization of the classification variable in the diseased population to the
conditional distribution of the non-diseased population.

These two interpretations justify to express the conditional ROC curve as
a sort of regression model of the form

(4.10) rocx(p) = g
(
µ(x), γ(p)

)
,

where g is a bivariate function on [0, 1] and γ is a function defined on the interval
[0, 1]. The function µ collects the effect of the covariates on the conditional ROC
curve, and γ is a baseline function related to the shape of the ROC curve. In order
to obtain a valid model of ROC curves, some restrictions need to be imposed on
the elements of model (4.10). In particular, the function g needs to be monotone
increasing in p, with g(µ(x), γ(0)) = 0 and g(µ(x), γ(1)) = 1 for all x. As in the
case of the induced methodology presented above, model (4.10) represents the
most general formulation of the direct methodology. In fact, only the additive
specification

(4.11) rocx(p) = g
(
µ(x) + γ(p)

)
has been addressed in the statistical literature. Different proposals have been
suggested, which differ in the assumptions made about the functions g, µ and
γ. In Pepe [27, 29] and Alonzo and Pepe [1], g is assumed to be known, the
effect of the covariates on the conditional ROC curve is assumed to be linear,
i.e., µ(x) = βTx, and the baseline function γ is assumed to have a parametric
form. Cai and Pepe [5] and Cai [3] leave γ completely unspecified, but the
function µ is linear as well. In general, models such as (4.11) with parametric
specifications for µ define the so-called class of ROC-GLMs due to its similarity
with a generalized linear model (GLM, [24]) in regression (Pepe [30]). In all
the aforementioned papers, the function g is assumed to be known. Huazhen el
al. [14] relax this assumption, by allowing a completely unknown function g. As
for the approaches in [5, 3], the function γ remains unspecified and µ is assumed
to have a parametric form. In a completely nonparametric framework, Rodŕıguez-
Álvarez el al. [34] extend the class of ROC-GLM regression models, by assuming
a generalized additive model (GAM, [12]) for the ROC curve, that is

µ(x) = µ(x1, . . . , xd) = α+

d∑
k=1

fk(xk),

where f1, . . . , fd are unknown nonparametric functions, and γ also remains un-
specified.

Either if the specifications in (4.11) involve a GLM structure (as in Alonzo
and Pepe [1]) or a GAM structure (as in Rodŕıguez-Álvarez el al. [34]), the
estimation process is similar and can be described as given in the following steps.
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First, choose a set of FPFs 0 ≤ pl ≤ 1, l = 1, . . . , nP , where the conditional
ROC curves will be evaluated. Second, estimate FD̄(· | x), say F̂D̄(· | x), on the
basis of the sample (XD̄i, YD̄i), i = 1, . . . , nD̄. Third, for each observation in the
diseased population, calculate the estimated placement value 1 − F̂D̄(YDi | x),
1 ≤ i ≤ nD. Fourth, calculate the binary indicators I(1− F̂D̄(YDi | x) ≤ pl), for
1 ≤ i ≤ nD and 1 ≤ l ≤ nP . And finally, fifth, fit the model g(µ(x) + γ(p)) as
a regression model with the indicators I(1 − F̂D̄(YDi | x) ≤ pl) as response and
covariates XDi and pl, i = 1, . . . , nD, l = 1 . . . , nP .

Depending on the chosen specifications for µ and γ, GLM or GAM tech-
niques will be employed for fitting the model (4.11). For instance, in Rodŕıguez-
Álvarez et al. [34] the proposed estimation procedure is based on a combination
of local scoring and backfitting algorithms (Hastie and Tibshirani [12]), and the
nonparametric functions f1, . . . , fd and γ are estimated using local linear kernel
smoothers (see Fan and Gijbels [8]). Note that in contrast to the nonparametric
approaches based on induced modelling presented above, this proposal allows for
the possibility of incorporating multidimensional covariates. However, the study
of the theoretical properties of the estimator is so far lacking in the literature.

Throughout the above outline of induced and direct modelling, the covari-
ates (whose effect on the ROC curve we seek to evaluate) were assumed to be
common to both the healthy and the diseased population. As mentioned before,
in practice this is not necessarily so. For instance, it may be of interest to eval-
uate the performance of the diagnostic variable with respect to disease stage.
Induced methodology poses no problem when it comes to incorporating specific
covariates of healthy or diseased populations, or both. On the other hand, direct
methodology –as presented here– accepts no specific covariates of the healthy
population. Yet, even in cases where this may seem a restriction, the need arises
in few situations in practice.

4.2. Estimation of the covariate-adjusted ROC curve

As explained in the introduction, in some practical cases, although the
diagnostic test varies along with the covariates, its discriminatory capacity may
remain unalterable. In such a situation, instead of considering the conditional
ROC curve, the covariate-adjusted ROC curve is more convenient. The definition
given in (3.3)

aroc(p) = P
(
YD > F−1

D̄
(1− p |XD)

)
suggests estimating the covariate-adjusted ROC curve as sample proportion of
individuals in the diseased population that exceed a certain covariate-specific
threshold calculated with the conditional quantile function in the healthy popu-
lation. Note that the conditional quantile function is an unknown function and
therefore needs to be estimated. Janes and Pepe [19] propose estimators of the
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form

âroc(p) =
1

nD

nD∑
i=1

I
(
YDi > F̂−1

D̄
(1− p |XDi)

)
,

where F̂−1
D̄

(1− p |XDi) can be estimated semiparametrically or nonparametri-
cally. In the context of the induced methodology described in Subsection 4.1,
Rodŕıguez-Álvarez et al. [33] used the relation between the conditional quantile
and the quantile of the regression errors to obtain the following nonparametric
estimator:

âroc(p) =
1

nD

nD∑
i=1

I

(
YDi − µ̂D̄(XDi)

σ̂D̄(XDi)
> Ĝ−1

D̄
(1− p)

)
,

where µ̂D̄ and σ̂D̄ are nonparametric estimators of µD̄ and σD̄ in model (4.3),
and Ĝ−1

D̄
is the empirical quantile function of the estimated residuals. However,

the theoretical properties of this estimator have not been studied yet.

5. ILLUSTRATION WITH REAL DATA

In this section, a real data illustration of the importance of including co-
variates into the ROC framework is presented. The data set comes from a
cross-sectional study carried out by the Galician Endocrinology and Nutrition
Foundation (FENGA), consisting of 2860 individuals representative of the adult
population of Galicia (northwest of Spain). A detailed description of this data set
can be found in Tomé et al. [37]. For confidentiality reasons, only a subsample
of the global sample was used in this paper, where we aimed at assessing the
performance of the body mass index (BMI) for predicting clusters of cardiovas-
cular disease (CVD) risk factors. Accordingly, diseased subjects were defined as
those having two or more CVD risk factors (raised triglycerides, reduced high-
density lipoprotein cholesterol, raised blood pressure and raised fasting plasma
glucose), following the International Diabetes Federation criteria [17]. For the
study here presented, a total of 1419 individuals were selected from the original
data set, with an age range between 18 and 85 years. From those, 46.4% are
men (449 healthy and 209 diseased) and the remaining 53.6% are women (625
healthy and 136 diseased). An in-depth study of the global data set is presented
in Rodŕıguez-Álvarez et al. [33, 34].

It is well known that antropometric measures behave differently according
to both age and gender. This can be observed in Table 1, where some summary
statistics of the BMI for men and women, as well as for different age strata,
are presented. As illustrated in Section 2, it is therefore advisable to incor-
porate both covariates into the ROC analysis. In this paper, we applied the
nonparametric induced approach proposed by González-Manteiga et al. [10] and
Rodŕıguez-Álvarez et al. [33] and presented in Section 4.1. Since this proposal
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1st Quartile Median 3rd Quartile

Global sample 22.84 25.91 29.34

Gender
Female 22.00 24.69 25.91
Male 24.16 26.88 27.14

Age strata
< 30 years 21.28 22.85 25.83
30–39 years 22.66 25.40 28.08
40–49 years 24.18 26.77 29.74
50–59 years 25.84 28.65 31.46
≥ 60 years 26.62 29.38 31.72

Table 1:
Median and interquartile range of the BMI for the global sample,
for men and women, and for different age strata.

only admits one continuous covariate, separate analyses were conducted on men
and women respectively.

In addition to the estimated conditional ROC curves, other summary mea-
sures of accuracy, the conditional AUC and the age-adjusted ROC curve, were
also obtained. In Figure 3, the estimated age-adjusted ROC curve for both men
and women is shown, jointly with the estimated pooled ROC curve. As can be
observed, in both cases the age-adjusted ROC curve lies below the pooled ROC
curve, especially for men. It is worth remembering that the covariate-adjusted
ROC curve is an average of conditional ROC curves, and can therefore be in-
terpreted as a covariate-adjusted global discriminatory measure. Thus, for the
endocrinology data, pooling the data regardless of age and gender would lead
to an optimistic conclusion about the discriminary capacity of the BMI when
predicting the presence of CVD risk factors.

In Figure 4 the estimated conditional ROC curve and AUC for different age
values are depicted, for both men and women. Note that whereas for men the
accuracy of the BMI is more or less constant along age, for women, age displays
a relevant effect on the discriminatory capacity of this anthopometric measure.
This graphical conclusion was confirmed by applying the bootstrap-based test
presented in Rodŕıguez-Álvarez et al. [33]. The test enabled a significant age
effect to be detected in the case of women. In the case of men, however, there
was no evidence to suggest such an effect.

The results presented in this section emphasize once again the importance
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and consequences of not including the information provided by covariates when
evaluating the discriminatory capacity of a diagnostic test. In the case of women,
the conditional ROC curve should be reported since it has been proved that age
has an effect on the accuracy of the BMI. For men, however, no age effect was
detected. Nevertheless, even in this case, reporting the discriminatory capacity
of the pooled data would lead to an optimistic conclusion, and therefore the
age-adjusted ROC curve should be provided.

6. DISCUSSION

In this paper we explained why it is important to incorporate covariates in
the ROC analysis and which effect it has on the curve. We also presented two
different ways to take covariates into account, either by working with a conditional
ROC curve or with a so-called covariate-adjusted ROC curve. Several estimation
procedures were outlined for both approaches. Interested readers can find more
details in the provided references.

Although we focused in this review on the estimation of the ROC curve
in the presence of covariates, it is clear that apart from the ROC curve itself,
interest also lies in summary statistics of the ROC curve, like e.g. the AUC, the
Youden index and other related indices. Within a parametric or semiparametric
framework, some attempts about this topic can be found in Faraggi [9], in which
the induced methodology is employed, and in Dodd and Pepe [6, 7] and Cai and
Pepe [4], all based on the ROC-regression direct modelling approach.

An interesting extension of the ROC methodology is the extension to func-
tional data. We mention the paper by González-Manteiga et al. [15], who consider
the extension to functional covariates. To this end, semiparametric and nonpara-
metric induced ROC-regression estimators are proposed and studied. Also, the
extension of the ROC methodology from completely observed data to censored
data is a promising field of research. For an overview article on this topic we refer
to Pepe et al. [31].

Another interesting point to note is that almost no theory has been done for
the nonparametric estimators of the conditional and adjusted ROC curve, except
in González-Manteiga et al. [10], who obtain the asymptotic normality of nonpara-
metric estimators of both the conditional ROC curve and the conditional AUC
based on induced methodology. Their results are limited to a one-dimensional
covariate, but they can be easily extended to multi-dimensional covariates by
using Neumeyer and Van Keilegom [25] in the proofs of the asymptotic results.

A number of issues remain unexplored in the context of ROC curves with
covariates. For instance, a lot of work remains to be done to extend the concept of
relative distributions to the inclusion of covariates (see Handcock and Morris [13]
for a textbook on this topic). ROC curves are very much related to relative
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distributions or relative densities (see e.g. Li et al. [21]), but their objective is
different. In fact, the ROC curve in a point 0 < p < 1 equals one minus the
relative distribution evaluated in 1−p. Since the relative density of one population
versus another population equals the uniform density in case both populations
have the same distribution, it is clear that deviations from the uniform density
give an indication of the way in which the two distributions differ from each
other. Hence, relative densities are more used in the context of comparing the
distribution of two populations, whereas ROC curves are used for assessing the
discriminatory capacity of a diagnostic test. As far as we are aware of, no formal
and detailed study of the concept of relative distribution or relative density in
the presence of covariates has been developed so far.
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Figure 1:
(a) Probability distributions of a hypothetical diagnostic test Y
in diseased (solid line) and healthy (dashed line) populations
conditional on a binary covariate X = 0, 1. Shown in (b), (c)
and (d) are the pooled probability distributions (left panel), and
the corresponding pooled ROC curves, along with the common
conditional ROC curves (right panel). Scenario I: disease sta-
tus and covariate are independent, P (status D | X = 0) = 0.5
and P (status D | X = 1) = 0.5. Scenario II: P (status D |
X = 0) = 0.2 and P (status D | X = 1) = 0.8. Scenario III:
P (status D | X = 0) = 0.6 and P (status D | X = 1) = 0.4.
In all cases P (status D) = 0.5 and P (X = 1) = 0.5 were con-
sidered. The performance of the common threshold 3.9 is also
indicated (red lines and dots), as well as the common conditional
threshold that gives rise to a FPF = 0.2 in both the populations
determined by covariate X (green lines and dots).
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Figure 2:
(a) Probability distributions of Y in diseased (solid line) and
healthy (dashed line) populations conditional on X and pooled
probability distributions. (b) Conditional ROC curve in each of
the populations determined by covariate X, together with the
pooled ROC curve. The shown results were obtained assuming
that the performance and discriminatory capacity of the diag-
nostic test depend on X, but X is independent of true disease
status: P (status D | X = 1) = P (status D | X = 0) = 0.5.
Moreover, P (status D) = 0.5 and P (X = 1) = 0.5 were consid-
ered.
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Figure 3:
Estimated pooled ROC curve for the endocrinology data (solid
line). The dashed and dotted lines represent the estimated age-
adjusted ROC curve for women and men, respectively.
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Figure 4:
Estimated conditional ROC curves and AUCs for the en-
docrinology data for women and men. The dashed lines rep-
resent the 95 per cent pointwise bootstrap confidence interval.
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