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∗ISBA, Université catholique de Louvain
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1 Introduction

According to the Direct Marketing Association1, direct marketing is an interactive process of
addressable communication that uses one or more advertising media to effect, at any location,
a measurable sale, lead, retail purchase or charitable donation, with this activity analyzed on
a database for the development of ongoing mutually beneficial relationships between marketers
and customers, prospects or donors. Such an approach leads to more effective campaigns, by
targeting individuals most likely to be interested in a specific offer. However, this strategy re-
quires much more information about all potential customers, since one has to understand their
current behaviour and preferences in order to be able to predict them in the future. Hence
the use of databases gathering information about individuals and on which data mining algo-
rithms can be trained. This data can relate, among others, to the profile of the individuals
and their preferences (e.g. for a brand, for specific product attributes). This information can
be collected by conducting a survey, which can be administered in different ways, as explained
in Malhotra et al. (2007): by phone, by personal discussion (in the home of the respondent,
in a mall, in the street, etc.), by mail, by email and on the internet.

In this paper, we consider the generic context of a self-administered study containing two
main types of questions:

Y-variables Rating questions, i.e. questions in which respondents must assign a score, on a
given ordinal scale, to each item of interest. In our context, such questions can typically
refer to opinions or behaviours (I agree to pay more for environment-friendly products:
Strongly agree - Agree - No opinion - Disagree - Strongly disagree) or frequency of
behaviours (How often do you shop in supermarket x: Never - From time to time -
Regularly - Most often).

X-variables Two main types of individual characteristics: the profile of the respondent (age,
gender, profession, city, income, etc.) and additional variables, which can be discrete
(nominal or ordinal) or continuous and can concern many different characteristics, be-
haviours or preferences of the respondent.

This paper introduces a methodology, based on latent class analysis (LCA), that allows us
to identify groups of individuals (characterized by some X-variables) with a similar pattern
of responses to the Y-variables, groups of items which tend to be chosen together, and links
between the individual profiles and the response patterns. In comparison with some common
data mining algorithms, this methodology emphasizes the understanding of the obtained
clusters of individuals, rather than the prediction of the cluster membership. We introduce
heterogeneity across individuals and allow latent class probabilities to depend on covariates,
which delivers detailed characterizations of the clusters.

Furthermore, an important issue related to rating scales must be taken into account: the
potential existence of response styles. According to van Herk et al. (2004), response bias
is a systematic tendency to respond to a range of questionnaire items on some other basis
than the specific item content, and if a respondent displays bias consistently across items
and methods, this bias is called a response style. The authors make a distinction between
three types of response bias: socially desirable responding (influence of the cultural norms),

1http://www.the-dma.org
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acquiescence (the tendency to agree rather than disagree with items) and extreme response
bias (the tendency to endorse extreme response categories on a rating scale (e.g., the 1 and/or
5 on a 5-point scale), regardless of content). In order to deal with this issue, we consider
latent class models allowing for additional within-class heterogeneity.

The next section describes the methodology that we suggest in order to analyze rating
questions. We first briefly introduce the standard latent class model described, among others,
by Goodman (1974). We then present two of its extensions which are useful in our context: the
latent class model with covariates, which is an extension of the model proposed by Bandeen-
Roche et al. (1997) to the case of polytomous variables, and the latent class model with
covariate effects on underlying and measured variables of Huang and Bandeen-Roche (2004).
We provide a function in R that deals with estimation and inference of this model. We then
propose a strategy for model specification, including the choice of the number of classes,
selection of covariates, assessment of identifiability and diagnostic tests.

In Section 3, we apply this methodology to a marketing database about the preferences
of Belgian households for supermarkets. We are interested in ordinal variables representing
the shopping frequency reported by the household on the scale Never - From time to time -
Regularly - Most often for 7 supermarkets.

Finally, in Section 4, we expose the most important marketing and statistical conclusions
that can be drawn from our results. We also discuss the limitations of our approach and
suggest some ideas for future work.

2 Heterogeneous latent class models

In latent class analysis, we would like to use several categorical indicators to measure an
unobservable concept which is conceptually defined but cannot be measured directly (see e.g.
Bandeen-Roche et al., 1997). A description of the standard latent class analysis model can be
found, for example, in McCutcheon (1987) and is summarized here. This method, which can
be seen as a categorical data analogue to factor analysis, allows one to analyze the structure
of the relationships among manifest, i.e. observed, discrete (nominal or ordinal) variables, in
order to characterize a categorical latent, i.e. unobserved, variable. More precisely, it allows
one to identify exclusive latent classes which explain the distribution of the observations in
the contingency table obtained by crossing the manifest variables. This corresponds to our
objective: identify groups of individuals that explain the observed response patterns.

Latent class analysis belongs to the group of latent variable models (or latent structure
models, one type of mixture models), which encompasses three other methods, depending on
the nature of the manifest and latent variables: factor analysis, latent trait analysis and latent
profile analysis.

The basic assumption of latent class analysis is that the observed variables are caused by
a latent categorical variable: they are (imperfect) indicators of this unobservable variable.
Relationships between these manifest variables can be either causal (an independent variable
causes a dependent variable) or symmetrical. It is also assumed that the covariation existing
between the observed variables is explained by the latent variable: the relation exists because
the manifest variables are all linked to the latent one. Hence, within each class of the latter
variable, the covariation between manifest variables should not be higher than random covari-
ation: this is the conditional independence (or local independence) condition. The goal is then
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to find classes within which the observed variables are independent. Neither the assumption
of multivariate normality nor that of continuity of measurement are required.

2.1 The standard latent class model

If we denote

• individuals by i, where i = 1, . . . , N ,

• manifest variables (items) by Ym, where m = 1, . . . ,M ,

• levels of the manifest variables by k, where k = 1, . . . ,Km and m = 1, . . . ,M ,

• the latent variable by S, S = j and j = 1, . . . , J ,

then the standard latent class model has the following form:

P (Yi = y) = P (Yi1 = y1, . . . , YiM = yM ) =
J∑

j=1

πj

M∏
m=1

Km∏
k=1

pymk
mkj (1)

where ymk = 1(ym = k). The parameters of the model are πj = P (Si = j) and pmkj =
P (Yim = k|Si = j): the former are the latent class probabilities (which describe the distribu-
tion of the latent variable) while the latter are the conditional probabilities (which allow us to
characterize the classes which have been obtained by the method, since they determine the
extent to which individuals in a given class are likely to be in each category of the manifest
variables).

The maximum likelihood estimates of these parameters are found by using the Expectation-
Maximization (EM) algorithm, see e.g. McCutcheon (1987). This algorithm is implemented
in the R packages poLCA and randomLCA.

One important issue regarding latent class models is the identifiability. Bandeen-Roche et
al. (1997) define it as follows:

Definition 1 (Local identifiability). A distribution F is locally identifiable at the parameter
φ0 if there exists some neighborhood τ of φ0 such that

FY(y;φ0) = FY(y;φ) ∀y ∈ SY ⇔ φ = φ0, ∀φ ∈ τ ⊂ Φ

where Φ is the set of all possible φ and SY is the distributional support of Y.

A sufficient condition for local identifiability of the standard latent class model can be
found in Goodman (1974).

As far as the goodness of fit of the model is concerned, one can test the estimated model
against a saturated model by using the likelihood ratio chi-squared statistic G2 and the Pearson
goodness-of-fit statistic X2. However, some authors criticize the use of these statistics in some
situations, for example when the contingency table crossing the manifest variables is sparse.
For more details, see (among others) Collins et al. (1993) and Formann (2003).

Finally, when the number of latent classes is not known a priori, it has to be chosen by
comparing competing models. Lin and Dayton (1997) question the use of the likelihood ratio
chi-square (G2) difference statistic: the compared models must be nested, but even in this
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case, G2 does not necessarily have a central chi-squared distribution. As an alternative, the
authors suggest to use classical model selection criteria such as AIC or BIC.

The standard latent class model first allows us to identify (latent) clusters of individuals.
Second, for each of these clusters, conditional probabilities of being at each level of each item
(given that the individual belongs to a particular latent class) are computed: they enable us
to characterize the groups by their general pattern of answers to the Y-questions. However,
this model does not characterize the classes in terms of other variables, i.e. it does not relate
the latent class probabilities to covariates. This is why, in the strategy that we suggest, we
only use this model in order to determine the number of latent classes (as is done in Bandeen-
Roche et al., 1997), on the basis of the BIC criterion. The most valuable insights are gained
by using two extensions of this standard model: the latent class regression model described
in Bandeen-Roche et al. (1997) and which we call latent class model with covariates in this
work (as in Linzer and Lewis, 2011b), and the latent class model with covariate effects on
underlying and measured variables of Huang and Bandeen-Roche (2004).

2.2 Latent class model with covariates

In the standard latent class model, the conditional and latent class probabilities pmkj and
πj are considered homogeneous over individuals. However, this simple model is not suited
to all situations. Relating latent class probabilities to individual covariates would allow one
to describe the different classes obtained by the analysis. Although this objective could
be achieved by regressing the latent class membership obtained by a standard LCA on the
covariates of interest through a multinomial logistic regression (this is the three-step method),
Bolck et al. (2004) show that the estimated parameters of the model relating latent class
probabilities to covariates can be asymptotically biased. Bolck et al. (2004) as well as Vermunt
(2010) suggest strategies to correct the bias in this method.

We consider here a latent class model which directly incorporates covariates. This strategy
leads to optimal asymptotically unbiased, consistent and efficient estimates if both models
(standard LCA and the model relating latent class probabilities to covariates) are valid in
the population and if the statistical assumptions (like multinomial sampling distributions)
are met (Bolck et al., 2004). It consists in making the latent class membership depend on
a set of individual covariates through a linear generalized (multinomial) logit link function.
This allows us to summarize the effect of covariates on the underlying mechanism (the latent
variable). Bandeen-Roche et al. (1997) originally consider binary manifest variables, but we
present the extension to polytomous variables, assuming Km categories for manifest variable
m.

The model is the following (xi is the P × 1 individual vector of covariates, which can be
categorical or continuous):

P (Yi = y|xi) = P (Yi1 = y1, . . . , YiM = yM |xi) =
J∑

j=1

πj(x′iβ)
M∏

m=1

Km∏
k=1

pyimk
mkj , i = 1, . . . , N

where yimk = 1(yim = k),

πj(x′iβ) =
exp(x′iβj)∑J

q=1 exp(x′iβq)
=

exp(β1jxi1 + . . .+ βPjxiP )∑J
q=1 exp(β1qxi1 + . . .+ βPqxiP )

j = 1, . . . , J ; i = 1, . . . , N
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is the inverse link of a linear generalized logit model. If J is the reference class, then βJ = 0.
Two conditions are linked with this model, as pointed out by Bandeen-Roche et al. (1999):

no response associations within individuals (conditional independence) and no direct effects of
covariates on the manifest variables, i.e. the conditional probabilities do not depend on covari-
ates (nondifferential measurement): P (Yim = ym|Si,xi) = P (Yim = ym|Si),m = 1, . . . ,M .
This implies that Yi and xi are independent given Si.

Bandeen-Roche et al. (1997) use the EM algorithm to estimate all parameters: this ap-
proach is implemented in the R package poLCA, which handles polytomous manifest variables.
The authors advise to fit standard latent class models without covariates, then choose the “op-
timal” number of classes and finally fit latent class models with covariates with this number
of classes.

To test the null hypothesis of no association between covariates and the latent variable,
the likelihood-ratio statistic can be used.

As far as the general goodness of fit of the model is concerned, Bandeen-Roche et al. (1997)
plot, for each manifest variable and each covariate pattern, the estimated versus observed
probability of being in a particular category of this manifest variable given the covariate
pattern. If the model fits well, the probabilities should be close to each other. Moreover,
the authors suggest a method which can determine adequacy of both the nondifferential
measurement and the conditional independence assumptions. The idea is the following: under
conditional independence and nondifferential measurement, there is no association among
manifest variables or between the manifest variables and the covariates within a latent class.
This idea leads to the algorithm:

1. Fit the latent class model with covariates.

2. Estimate the posterior latent class probabilities:

ĥij = P̂ (Si = j|Yi = yi,xi, p̂, β̂) =
π̂j(x′iβ̂)

∏M
m=1

∏Km
k=1 p̂

yimk
mkj∑J

l=1 π̂l(x′iβ̂)
∏M

m=1

∏Km
k=1 p̂

yimk
mkl

i = 1, . . . , N ; j = 1, . . . , J

3. Randomly assign each individual to a latent class, with probabilities given by the pos-
terior probabilities computed in the previous step.

4. Assess mutual independence among the manifest variables and between the manifest
variables and the covariates within each latent class. A diagnostic detecting violation
of the nondifferential measurement assumption consists in regressing, for each latent
class, the manifest variables pattern on the covariates (using a generalized logit link),
and verifying whether the covariate effects are significant.

Finally, Bandeen-Roche et al. (1997) give three methods to assess the local identifiability
in their model, among which the Theorem 1 in their paper, which provides sufficient conditions
for local identifiability.
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2.3 Latent class model with covariate effects on underlying and measured
variables

In the generic case that we are studying (individuals giving ratings to a number of items),
it is possible that we will observe response styles (as mentioned in the introduction). If the
behaviour can be explained by the covariates used to predict class membership, the nondif-
ferential measurement assumption does not hold.

In order to analyze self-reported scorings of items, Huang and Bandeen-Roche (2004) use
a latent class model with covariate effects on latent and manifest variables, i.e. they impose
logit-type models (through the use of individual-level covariates) on both the latent class and
the conditional probabilities. In this section, we describe their model.

Relating the latent class membership to independent variables allows us to estimate the
effects of these variables on the latent construct. They also argue that letting the within-class
distribution of manifest variables vary among individuals aims to adjust for characteristics
(other than the latent classes) that determine manifest variables, hence trying to improve the
accuracy of the classification of individuals.

They make the distinction between two sets of covariates:

• xi = (1, xi1, . . . , xiP )T are assumed to be related with the latent class probabilities.

• zi = (zi1, . . . ,ziM ) with zim = (1, zim1, . . . , zimL)T , m = 1, . . . ,M are covariates which
can have a direct effect on the manifest variables. These covariates can be specific to
each manifest variable (hence the subscript m).

These covariates can be continuous and/or discrete, and the two sets can be mutually exclusive
or overlap.

The regression extension of latent class analysis is then:

P (Yi = y|xi, zi) = P (Yi1 = y1, . . . , YiM = yM |xi, zi)

=
J∑

j=1

{
πj(x′iβ)

M∏
m=1

pyimk
mkj (γmj + z′imαm)

}
, i = 1, . . . , N.

Huang and Bandeen-Roche (2004) use the logit link function, which leads to the following
constraints on the model parameters:

log
(
πj(x′iβ)
πJ(x′iβ)

)
= β0j + β1jxi1 + . . .+ βPjxiP

= x′iβj i = 1, . . . , N ; j = 1, . . . , (J − 1) (2)

log
(
pmkj(γmj + z′imαm)
pmKj(γmj + z′imαm)

)
= γmkj + α1mkzim1 + . . .+ αLmkzimL

= γmkj + z′imαmk (3)

i = 1, . . . , N ; m = 1, . . . ,M ; k = 1, . . . , (Km − 1); j = 1, . . . , J

If all regression coefficients α and β are set to 0, this model reduces to basic LCA, while
setting γmkj = ±∞ corresponds to a constrained model with the corresponding conditional
probability being 0 or 1.

Huang and Bandeen-Roche (2004) present the three assumptions underlying this model:
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1. Latent class probabilities are associated with xi only,

P (Si = j|xi, zi) = P (Si = j|xi)

2. Responses conditional on class membership only depend on zi,

P (Yi1 = y1, . . . , YiM = yM |Si,xi, zi) = P (Yi1 = y1, . . . , YiM = yM |Si, zi)

3. Manifest variables are independent given class membership and zi,

P (Yi1 = y1, . . . , YiM = yM |Si, zi) =
M∏

m=1

P (Yim = ym|Si, zim)

The coefficients αlmk are not allowed to vary across latent classes because, otherwise, model
identifiability could fail. Theorem 1 of Huang and Bandeen-Roche (2004) gives sufficient
conditions for local identifiability.

For estimation, Huang and Bandeen-Roche (2004) use maximum likelihood combined
with the Expectation-Maximization (EM) algorithm. The complete-data log-likelihood of the
model can be written as

logLc(φ; Y,S) =
N∑

i=1

J∑
j=1

Sij log πj(x′iβ) +
N∑

i=1

J∑
j=1

M∑
m=1

Km∑
k=1

SijYimk log pmkj(γmj + z′imαm)

with Sij = 1(Si = j).
Let φ = (γmj ,αm,β). The EM algorithm requires the expected log-likelihood function,

conditional on the observed data y, x, z and provisional estimates φ∗:

Q(φ|φ∗) =
N∑

i=1

J∑
j=1

hij(φ∗) log πj(x′iβ
∗)

+
N∑

i=1

J∑
j=1

M∑
m=1

Km∑
k=1

hij(φ∗)yimk log pmkj(γ∗mj + z′imα
∗
m)

by noting that E(Sij |Yi = yi,φ
∗,xi, zi) = hij(φ∗) The p-th step of the EM algorithm,

computing φ(p+1) from φ(p), is then:

E-step Compute Q(φ|φ(p))

M-step Find φ which maximizes Q(φ|φ(p))

These two steps are repeated until the improvement in the log-likelihood logL(φ; Y) =∑N
i=1 logP (Yi|xi, zi) is arbitrarily small.
The E-step thus consists in computing the posterior probabilities given the current pa-

rameter estimates. Then, the M-step takes these probabilities as given and optimizes the
Q-score. This optimization problem has no closed form solution and must therefore be solved
numerically, e.g. by using the EM gradient algorithm introduced by Lange (1995).

The M-step can be implemented separately for each of the (M + 1) following subsets
of parameters: First, β = (β0, . . . ,βP ) where βp = (βp1, . . . , βp(J−1)), p = 0, . . . , P . And
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second, ωm = (γm1, . . . ,γmJ ,α1m, . . . ,αLm) with γmj = (γm1j , . . . , γm(Km−1)j) and αqm =
(αqm1, . . . , αqm(Km−1)). Indices are j = 1, . . . , J ; q = 1, . . . , L;m = 1, . . . ,M . Then, the
optimization problem reduces to (M + 1) smaller ones: Find β which maximizes

Qβ(β|φ(p)) =
N∑

i=1

J∑
j=1

hij(φ(p)) log πj(x′iβ).

and ωm,m = 1, . . . ,M which maximizes

Qωm(ωm|φ(p)) =
N∑

i=1

J∑
j=1

Km∑
k=1

hij(φ(p))yimk log pmkj(γmj + z′imαm).

The first and second derivatives needed in the one iteration Newton-Raphson method are
given in Appendix B of Huang and Bandeen-Roche (2004).

The variance-covariance matrix is estimated by the inverse of the observed Fisher in-
formation matrix based on the incomplete-data likelihood and evaluated at the parameter
estimates. This information matrix, which we denote by I(φ; Y) = −D2

φ logL(φ; Y), can be
computed in the EM framework, requiring conditional moments of partial derivatives of the
complete-data log-likelihood used in the algorithm. If we denote the information matrix of
the complete-data likelihood by Ic(φ; Y,S) = −D2

φ logLc(φ; Y,S), the observed information
matrix is given by

I(φ̂; Y) = E(Ic(φ; Y,S|Y))|φ=φ̂ = V ar[(D1
φ logLc(φ; Y,S)|φ=φ̂)|Y]

where φ̂ is the maximum likelihood estimate of φ. Expressions of the elements of the variance-
covariance matrix can be found in Appendix B of Huang and Bandeen-Roche (2004).

As no R package currently deals with models with covariate effects on both the conditional
and the latent class probabilities, we provide it for download on our webpage2, which is an
extension of the source code of the R package poLCA (Linzer and Lewis, 2011a) to the method-
ology proposed by Huang and Bandeen-Roche (2004). The main function is covLCA(), whose
arguments and outputs are explained in the appendix. All manifest variables must have the
same number of categories, i.e. Km = K ∀m. The function first retains only individuals
with no missing values in both manifest variables and covariates. It then computes initial
estimates for β: a standard latent class model is estimated, then each individual is assigned
to a class with the posterior probabilities of class membership from this model, and finally a
multinomial logistic regression model relating the latent classes to the covariates x is fitted,
whose coefficient estimates give initial estimates of β. Furthermore, M different multinomial
logistic regression models are fitted for (Yi1, zi1), . . ., (YiM , ziM ) and the corresponding es-
timated coefficients are taken as initial values for parameters α and γ. The E and M-step
are then iterated (the M-step being implemented for each subset of parameters) until the im-
provement in the log-likelihood becomes smaller than a chosen threshold (10−10 by default).
The function is provided with the analytical expressions of all derivatives.

2http://www.uclouvain.be/aurelie.bertrand
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2.4 A strategy for the analysis of rating scores

On the basis of the papers of Bandeen-Roche et al. (1997 and 1999) and Huang and Bandeen-
Roche (2004), we suggest the following strategy for the analysis of rating scores. We work in
the R environment.

2.4.1 Choice of the manifest variables

In a preliminary step, we advise to consider a transformation of the original ratings. This
can be useful if we suspect the presence of response styles, and hence conditional dependence
in the data: an appropriate transformation can reduce this problem and make the ratings
comparable between individuals.

For example, if the respondents differ in their mean rating, it could be interesting to
consider the relative scores given by each respondent. This can be achieved by replacing the
rating of each item by its ranking : the item(s) with the highest rating is (are) assigned the
value 1, the item(s) with the second highest rating receive(s) the value 2, and so on.

2.4.2 Choice of the number of latent classes

We begin by estimating some standard latent class models without covariates, each of them
with a different number of latent classes. We use the R function poLCA() and estimate each
model 20 times with different initial values, in order to try to find the global maximum (and
not a local one). We then compare the obtained models on the basis of the AIC and BIC
criteria (computed by R). We decide to choose the model with the lowest BIC value. We
can also assess the performance of each model using statistics such as the likelihood ratio
chi-squared statistic and the Pearson goodness-of-fit statistic, provided that the data matrix
is not sparse. Finally, we choose one single model, which we denote by LCA1.n, whose number
of latent classes will be used in the subsequent analyses.

We must assess the local identifiability of this model: we implement Goodman’s (1974)
sufficient condition. First, the number of estimated parameters can not exceed the number
of independent observations. Second, we have to check whether the rank of the matrix con-
taining the derivatives of the joint probability P (Y1 = y1, . . . , YM = yM ) =

∑J
j=1 P (Y1 =

y1, . . . , YM = yM , S = j) with respect to all parameters has full column rank. If we denote by
h a manifest variable pattern, h = 1, . . . , (

∏M
m=1Km)− 1, rows of the Jacobian correspond to

profiles and columns correspond to parameters. The profile probabilities are:

Ph = P (Y1 = yh1, . . . , YM = yhM )

=
J∑

j=1

πj

M∏
m=1

{
Km−1∏
k=1

pyhmk
mkj

(
1−

Km−1∑
k=1

pmkj

)yhmKm
}
, h = 1, . . . ,

M∏
m=1

Km − 1

where yhm represents the value taken by manifest variable m in profile h and yhmk = 1(yhm =
k). The derivatives with respect to latent class probabilities are:

∂Ph

∂πj
=

M∏
m=1

Km∏
k=1

pyhmk
mkj −

M∏
m=1

Km∏
k=1

pyhmk
mkJ , h = 1, . . . ,

M∏
m=1

Km − 1; j = 1, . . . , J − 1
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while the derivatives with respect to conditional probabilities are:

∂Ph

∂pnlj
= πj

 M∏
m=1;m6=n

Km∏
k=1

pyhmk
mkj

{yhnlp
yhnl−1
nlj

(
1−

Kn−1∑
k=1

pnkj

)yhnKn

−pyhnl
nlj yhnKn(1−

Kn−1∑
k=1

pnkj)yhnKn−1

}

=


0 if yhnl = 0 and yhnKn = 0
πj
∏M

m=1;m6=n

∏Km
k=1 p

yhmk
mkj if yhnl = 1 and yhnKn = 0

−πj
∏M

m=1;m6=n

∏Km
k=1 p

yhmk
mkj if yhnl = 0 and yhnKn = 1

h = 1, . . . ,
M∏

m=1

Km − 1; n = 1, . . . ,M ; l = 1, . . . ,Kn − 1; j = 1, . . . , J

We can compute the rank of this matrix using, for example, the R function qr() (in package
base).

As noted by Reboussin et al. (2008), conditional dependence between manifest variables
can lead to goodness-of-fit statistics preferring models with more latent classes. If we suspect
such a problem, we can first carry out some diagnostics for conditional dependence on model
LCA1.n in order to verify whether the assumption of conditional independence holds. If
it does, we may want to check whether conditional independence is artificially attained by
assuming a too large number of classes, some of them being not very meaningful. We can
then estimate some latent class models with random effects, described in Qu et al. (1996):
such models take into account conditional dependence, which arises when similarity among
responses to several items is caused by some individual-specific characteristics besides the
latent class. The idea is that the individual characteristics can be summarized by a continuous
random variable T , which is unobservable. That random variable varies from person to person
and is normally distributed with zero mean and unit variance. The conditional probability of a
certain rating to an item, given the latent class and the random effect, is assumed to depend
on Si and T through a regression model. We estimate these models using the R package
randomLCA and see whether the number of latent classes chosen by both approaches (with
and without a random effect) agree. If this is the case, this number of classes can be used
in all subsequent models. If both approaches lead to different conclusions, and if the most
parsimonious model is easily interpretable while the most complete model seems to contain
too many classes, the former should be chosen.

2.4.3 Introduction of covariates to model the latent class probabilities

We then fit a latent class model relating the latent class probabilities to some covariates, with
the number of latent classes chosen in the previous step: this model is obtained with poLCA()
and is denoted by LCA2.n. In order to choose which covariates to include in this model,
we perform some chi-squared Pearson’s tests on the table crossing the latent class member-
ship from LCA1.n with the potential covariates. We must take care that the total number
of parameters to be estimated can not exceed the number of free cells of the contingency
table. In order to simplify convergence of the estimation procedure and the finding of the
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global maximum, we provide the R function with the estimated conditional probabilities of
LCA1.n as starting values for the estimates of the conditional probabilities of LCA2.n. We
check whether the introduction of covariates significantly improves the adjustment quality
(i.e. whether there is an association between the covariates and the latent variable), on the
basis of a likelihood ratio test comparing the two nested models LCA1.n and LCA2.n. If we
include more than one covariate, we also test the overall relationship between the latent class
membership and each covariate through another likelihood ratio test, before looking at the
effect of this covariate on the distinction between two classes.

To assess the quality of the fit of LCA2.n, we use the diagnostic suggested in Bandeen-
Roche et al. (1997): we first compare the observed proportions in each category of each
manifest variable to those predicted by model LCA2.n, for each pattern of covariates. If
there is a lack of fit for some items, the nondifferential measurement assumption might not
be satisfied. In R, this analysis can be conducted as follows: the computation of observed
proportions as a function of a covariate is straightforward, while the predicted proportions
for the different levels of covariates are:

P̂ (Ym = k|x) =
J∑

j=1

P̂ (Ym = k, S = j|x)

=
J∑

j=1

P̂ (Ym = k|S = j,x)P̂ (S = j|x)

=
J∑

j=1

P̂ (Ym = k|S = j)P̂ (S = j|x)

In order to check whether the assumption of nondifferential measurement holds, we apply
the algorithm suggested in Bandeen-Roche et al. (1997). We first randomly assign each
individual to one latent class based on the posterior latent class probabilities of LCA2.n.
Then we create a new categorical variable representing the manifest pattern (i.e. a particular
combination of the M manifest variables among the

∏
mKm possible ones) and regress, in

each latent class, this pattern on the covariates through a multinomial logistic model (with
the R package mlogit for example). Significant associations show that the first assumption
is violated.

In the case of binary manifest variables, the assumption of conditional independence can
be assessed by applying Uebersax’s (2000) method which consists in constructing, for each pair
of manifest variables, the observed and predicted two-way frequency tables, then computing
the log-odds ratio in both of them and finally, calculating a score comparing the expected and
observed log-odds ratios:

z =
LORobs − LORpred√

(1/n00 + 1/n10 + 1/n01 + 1/n11)
(4)

where nij is the observed frequency at the intersection of category i of the first variable
and category j of the second variable, LORobs = log(n00n11/n01n10), and LORpred is the
corresponding predicted log-odds ratio. If |z| is greater than a chosen critical value (1.645 or
1.96 for example), there is evidence that the items are conditionally dependent. The z-values
should only be considered as guides, the most important being to compare their relative sizes.
This method is used by Reboussin et al. (2008).
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As far as the local identifiability of LCA2.n is concerned, we use Theorem 1 in Bandeen-
Roche et al. (1997): as the local identifiability of model LCA1.n has already been checked,
this theorem only requires the full rank of the design matrix of covariates, which is easily
computed in R, and the assumption that the vector of latent class probabilities has no zero
element for at least one individual, which can be checked after the model has been estimated.

2.4.4 Introduction of covariates to model the conditional probabilities

We can now fit LCA3.n, a latent class model relating both the conditional and the latent
class probabilities to covariates, and having the same number of classes as chosen in the first
step. In order to choose which covariates to link to the conditional probabilities, we can apply
the same method as the one used to assess the nondifferential measurement assumption of
LCA2.n: in each latent class, we regress the manifest pattern on the potential covariates.

The estimation of LCA3.n is carried out using our extension of package poLCA, function
covLCA(). As for the two previous models, we run it several times in order to find the global
maximum of the log-likelihood. We compare the model fit with that of model LCA2.n, using
the same technique as in the previous step: we compare proportions in each manifest variable
predicted by LCA3.n to those observed and to those predicted by LCA2.n. A likelihood
ratio test allows one to determine whether the additional covariate(s) lead(s) to a significant
improvement in the model fit. We also verify whether this model is locally identifiable: we
apply the theorem introduced in Huang and Bandeen-Roche (2004) (and implemented in our
R program).

3 Application to rating scores in marketing

Our application is made in collaboration with the Managed Marketing Services (henceforth
MMS) unit of Business & Decision Brussels, a consulting company also working in the fields
of Business Intelligence, Customer Intelligence, Information Management, Risk Management,
Human capital Management, e-Business and Life Sciences3. The MMS unit works on a
direct marketing database, result of a self-administered survey sent by mail. This database
contains various information about more than 710 000 Belgian households: who they are,
where they live, their car, their house (presence of a swimming pool, number of bedrooms),
their consumption patterns, their hobbies, their holidays, etc.

In this work, we analyze the preferences for supermarkets of Belgian households living in
one of the Belgian provinces, Walloon Brabant. In this context, the manifest variables are 7
ordinal variables representing the shopping frequency reported by the household on the scale
Never - From time to time - Regularly - Most often, for each of the following supermarkets:

• Aldi, a German discounter.

• Carrefour and GB: hypermarkets Carrefour and supermarkets GB are two of the store
brands of the French supermarket chain Carrefour. Carrefour bought out GB in 2000.

• Colruyt, a Belgian discounter.
3http://www.businessdecision.be/
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• Cora, a Belgian supermarket chain. In 1967, the first supermarket opened under the
name “Carrefour”. The name “Cora” appeared only in 1974.

• Delhaize, a Belgian supermarket chain which owns several store brands, among them:
Delhaize Le Lion, AD Delhaize, Red Market, City, Proxy and Shop’n Go.

• Lidl, a German discounter.

These supermarkets can be grouped into three categories: discounters which sell (hardly) no
national brands (Aldi and Lidl), a discounter which sells both national and its own store
brands at low prices (Colruyt), and supermarkets selling national and store brands which do
not particularly emphasize low prices (Carrefour, GB, Cora and Delhaize).

We would like to be able to identify relationships between household profiles and supermar-
kets, which would allow us to characterize the most frequent customers of each supermarket,
identify groups of supermarkets which are often visited by the same households, and predict
the preferred supermarkets of a household for which the available information is limited. From
the point of view of latent class analysis, the latent variable can be broadly defined as the
preference for some attributes relating to supermarkets (which divide households into groups),
with the indicators being the frequency with which one shops in each of these places.

3.1 Choice of the manifest variables and preliminary data treatment

We decide to transform the manifest variables having four categories to binary indicators: we
suspect the presence of response styles (as explained in the introduction), in the sense that
some households always assign high scores, while others only use the lower part of the rating
scale. Hence, the absolute level of each variable is not very meaningful. Since the focus is
on the favourite supermarket(s), we create, for each variable, a corresponding dichotomous
variable (taking on values 1 and 2) indicating whether this supermarket has been assigned the
highest score attributed by the household: if we denote the original ratings by Y ∗im and the new
binary indicators by Yim, this transformation is of the form Yim = 1 + 1(Y ∗im = maxm Y ∗im),
i = 1, . . . , N , m = 1, . . . ,M , hence k ∈ {1, 2} and Km = 2,∀m. A household which has
assigned its highest score to more than one supermarket thus receives the value 2 for all
these supermarkets. These new variables can be interpreted as the favourite supermarkets:
they represent the relative scores given by each household and allow one to analyze relative
preferences.

As far as the covariates are concerned, we decide to consider four of the variables of the
database:

• Age of the respondent, X1 ∈ {< 18, 18− 35, 35− 45, 45− 55, 55− 65, 65− 75, > 75}

• Gender of the respondent, X2 ∈ {M,F}

• Socioprofessional activity of the respondent, X3 ∈ {Retired, Looking for a job, Stu-
dent, Civil servant, House wife/husband, Employed in the private sector, Self-employed,
Other}

• Highest education level in the household, X4 ∈ {Secondary school, Graduat, Licence/
maitrise/ doctorat, Other}
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There are missing values in all variables: we retain only the households with no missing
values in both the manifest variables and the four covariates, and which have assigned a score
higher than “never” at least once: 5473 households among 18893 are retained.

3.2 Choice of the number of latent classes

The BIC criterion favors a standard latent class model with nine latent classes: this model
is locally identifiable. Seven classes are easily interpretable, but the two other ones (which
represent together less than 10% of the households) group all households whose preferences
do not appear very clearly (households which have different behaviours). The diagnostics for
conditional dependence, given in equation (4) and applied to the models with eight (first lines
in Table 1) and nine latent classes (not displayed here) show that at least nine latent classes
are necessary to model the dependence existing in the data: in LCA1.8, there seems to be
conditional dependence between Delhaize and Colruyt. The crucial question is whether there
are indeed nine “behaviour patterns” in the population, or whether the results are influenced
by a potential dependence within households.

To answer this question, we estimate latent class models with random effects: on the
basis of the BIC criterion, a model with eight latent classes is chosen, i.e. one class less than
when using no random effect. This fact seems to confirm that, in a model without random
effect, nine classes are necessary to obtain conditional independence because of the presence
of a dependence between manifest variables within individuals, which is not explained by the
latent membership. Both models assuming eight latent classes (with and without random
effect) broadly yield similar results. We thus decide to estimate the following models with
eight latent classes.

3.3 Modelling of the latent class probabilities

A Pearson’s chi-square test is performed on each of the four contingency tables obtained
by crossing the predicted latent class (the class for which the posterior probability ĥij =
P̂ (Si = j|Yi = yi) is the highest) and one covariate: each covariate is associated4 with the
latent membership (although the association with Gender is weaker). Preliminary analyses
highlighted a link between the choice of the supermarket and variables pertaining to the
standard of living of the household, like the income, the education level, the profession, the
size of the house, the car brand, etc. We therefore choose to make the latent class membership
depend on the education level: this variable can be easily observed and considered, to a certain
extent, as a proxy for the standard of living.

In comparison with the model LCA1.8, the addition of Education significantly improves
the fit of the model (likelihood-ratio statistic: 243.55 with 21 degrees of freedom, the p-value
is virtually equal to 0). Moreover, the AIC is reduced from 34661 to 34460 and the BIC
decreases from 35077 to 35015.

On the basis of the goodness-of-fit diagnostic, we conclude that the model seems to fit
the data very well: for each category of Education, the observed and predicted proportions
of having each supermarket among its favourite ones are very close to each other (the largest
difference, relative on the estimated probabilities, is 0.01 for an estimated probability of
0.04). However, Table 1 shows that, from the point of view of the conditional independence

4P-value of the Pearson’s chi-squared test: < 2.2 ·10−16 for Age, Education and Profession, 0.04 for Gender.
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Table 1: Diagnosis for conditional independence for LCA1.8 (1st lines), LCA2.8 (2nd lines)
and LCA3.8 (3rd and 4th lines, for men and women respectively): scores comparing observed
and predicted log-odds ratios in each contingency table relating two manifest variables. The
scores higher than 2 are in bold.

Aldi Carrefour Colruyt Cora Delhaize GB Lidl
Aldi 0.19 0.30 -0.50 -0.22 0.85 0.96

0.70 1.01 -0.55 0.25 0.43 1.03
0.06 0.65 -0.19 0.11 0.70 3.09
0.43 -0.16 -0.53 -0.27 -0.05 -0.68

Carrefour 1.64 0.65 1.57 0.60 -0.31
1.49 0.64 1.33 0.49 -0.13
0.50 -0.01 0.55 0.18 0.81
1.59 0.84 1.30 0.63 -0.72

Colruyt 1.13 2.19 -0.83 0.31
1.35 2.12 -1.01 -0.39

-0.08 2.10 0.72 1.16
1.94 1.42 -1.72 -0.55

Cora 0.49 0 1.15
0.73 0.46 1.36

-0.71 -0.11 1.04
1.27 0.51 1.00

Delhaize 0.92 -0.19
1.28 0.77
1.28 0.52
0.01 0.01

GB -0.04
0.16
0.53
0.26
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assumption, the situation is similar to the one in LCA1.8: there could also be conditional
dependence between Colruyt and Delhaize. The predicted probabilities needed in the z-scores
are computed using P̂ (Y1 = y1, Y2 = y2) =

∑
j P̂ (Si = j)P̂ (Y1 = y1|Si = j)P̂ (Y2 = y2|Si = j)

where P̂ (Si = j) is the average over all individuals in the sample of the posterior latent class
probabilities. As far as the nondifferential measurement assumption is concerned, in each class
except one5, there is no significant relationship (based on a likelihood ratio test) between the
manifest pattern and Education. Finally, it is verified that LCA2.8 is locally identifiable.

3.4 Modelling of the conditional probabilities

In model LCA2.8, the response pattern significantly depends on the gender of the respondent
in two latent classes6. The “Gender” variable thus seems to be a good candidate. Moreover,
since this variable has only two categories, only a few additional parameters must be estimated
(91 instead of 84). However, although this estimated model is locally identifiable and that
adding Gender significantly improves the fit of the model (likelihood ratio statistic: 17.74 with
7 degrees of freedom, the p-value is 0.01), BIC increases from 35014.58 to 35057.08. According
to the BIC criterion, the more parsimonious model LCA2.8 would be chosen: the increase in
the number of parameters to be estimated outweighs the improvement in the log-likelihood.
Since the results (conditional probabilities and the regression coefficients of the model for the
latent class probabilities) are similar in models LCA2.8 and LCA3.8, we present the main
findings of the most flexible model, LCA3.8.

Table 1 contains the diagnostics for conditional dependence, calculated for men and women
separately, where the estimated odds ratios are computed using the formula P̂ (Y1 = y1, Y2 =
y2|gender) =

∑
j P̂ (Si = j)P̂ (Y1 = y1|Si = j, gender)P̂ (Y2 = y2|Si = j, gender) where

P̂ (Si = j) is the sum over all individuals in the sample of the posterior latent class proba-
bilities. For men, the score for the pair Colruyt-Delhaize is still rather high. Moreover, the
score between Aldi and Lidl becomes very high. The situation is better for women: no score
exceeds 2 in absolute value.

Table 2 contains the estimated latent class probabilities (for each latent class, the average,
over all individuals of the sample, of the estimated posterior probabilities) and conditional
probabilities (calculated for men and women separately). The differences in the estimated
conditional probabilities between men and women are limited: we will conclude later, on the
basis of Table 5, that the differences for supermarkets Carrefour and Colruyt are significant.

These estimated probabilities allow us to characterize the eight latent classes:

1. GB-Carrefour : all households go to GB, many of them (more than the overall proportion
in the whole sample, last row of table 2) to Carrefour too, and some of them (but less
than the overall proportion in the whole sample) to Delhaize and Colruyt as well.

2. Cora: all households go to Cora, some of them to Delhaize, Colruyt and Carrefour too.

3. Colruyt : all households go exclusively to Colruyt.
5In class GB-Carrefour : p-value of the likelihood ratio test is < 0.01.
6P-value in latent class Lidl-Aldi : 0.03 ; p-value in class Delhaize: 0.05.
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Table 2: Estimated conditional P̂ (Ym = 2|S = j) and latent class probabilities for model
LCA3.8 for women and men respectively. The reported latent class probabilities are the
average (over all individuals) of the latent class probabilities P̂ (Si = j|xi). The last row
contains the sample proportion, for each supermarket, of households having mentioned this
place among their favourite ones: 1

N

∑
i 1(yim = 2).

LC Aldi Carrefour Colruyt Cora Delhaize GB Lidl LC pr.
GB-Carr. F 0.08 0.40 0.19 0.01 0.35 1 0.06 0.11

M 0.07 0.48 0.23 0.01 0.34 1 0.05
Cora F 0 0.21 0.31 1 0.35 0 0.06 0.01

M 0 0.27 0.35 1 0.34 0 0.05
Colruyt F 0.03 0.02 1 0 0 0 0 0.22

M 0.02 0.03 1 0 0 0 0
Delh. F 0.02 0.10 0.19 0 1 0 0.02 0.25

M 0.02 0.13 0.23 0 1 0 0.02
Carr. F 0.04 1 0.10 0.01 0 0 0.04 0.12

M 0.04 1 0.12 0.01 0 0 0.03
Al.-Lidl F 1 0.15 0.25 0.01 0.17 0.09 0.52 0.17

M 1 0.20 0.29 0.02 0.16 0.10 0.49
Lidl F 0 0.11 0.23 0 0.10 0.08 1 0.06

M 0 0.15 0.28 0 0.10 0.09 1
Several F 0.80 0.91 0.68 0.39 0.78 0.73 0.72 0.06

M 0.79 0.94 0.72 0.42 0.77 0.75 0.70
Global 0.24 0.29 0.41 0.04 0.37 0.17 0.20

4. Delhaize: all households go (almost exclusively) to Delhaize, some of them to Colruyt
as well.

5. Carrefour : all households go (almost exclusively) to Carrefour, some of them to Colruyt
too.

6. Aldi-Lidl : all households to to Aldi, many of them to Lidl too, and some of them to
Carrefour, Colruyt and Delhaize as well.

7. Lidl : all households go to Lidl, some of them to Colruyt too.

8. Several : these households are more likely than the average to go to every supermarket.

There appears to be seven distinct customer profiles, while the last latent class con-
tains households whose consuming patterns are not clear and which do not belong to any of
the other groups. Although this number of profiles corresponds to the number of supermarkets
in the study, there are not only one-to-one relationships between the latent classes and the
supermarkets: links between some supermarkets are highlighted by the model: between Lidl
and Aldi, Delhaize and Colruyt, Cora and Delhaize, Cora and Colruyt, GB and Carrefour.
One explanation concerning the latter is that some former GB supermarkets now belong to
Carrefour: it is possible that some people fail to distinguish between them. As a result, we
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can not conclude that there exists a real link between the preference for each of these two
supermarkets.

The smallest class is Cora, while the two largest groups are Delhaize and Colruyt, each
representing about 20% of the population. This is consistent with the distribution of the
preference for each supermarket in the whole sample: the two most cited ones are Colruyt
and Delhaize (last row of Table 2).

It appears that in classes Lidl and Aldi-Lidl, households shopping most often in these
places are also likely to visit other supermarkets with the same frequency: we can describe
them as multi . One possible explanation is that households buy most of the things they need
at Aldi or Lidl, and go to another place to find national brands for specific products. This
behaviour can be contrasted with that of the households in the class Colruyt : they can be
considered as loyal customers, since they do not visit other supermarkets as often as the
households in classes Lidl and Aldi-Lidl do, probably because Colruyt offers both low price
products and national brands. The situation is similar in the classes Delhaize and Carrefour :
in the former, respondents liking Delhaize rarely have another preferred place (and when they
do, they choose Colruyt), and in the latter, households are most likely to visit Colruyt in
addition to Carrefour.

We now focus on the part of the model relating the latent class membership to the highest
education level of the household. The exponential transformation of the estimated parameters
of the multinomial logistic regression model gives the following odds ratios:

exp(βjp) =
P (S = j|education = p)/P (S = Several|education = p)

P (S = j|education = autre)/P (S = Several|education = autre)

The reference category of Education is “Other degree”, while the reference class is Several,
but it can easily be shown that the quotient of the odds ratios pertaining to two latent classes
gives the odds ratio comparing these two classes:

exp(βjp)
exp(βqp)

=
P (S = j|education = p)/P (S = q|education = p)

P (S = j|education = autre)/P (S = q|education = autre)

The odds ratios can be found in Table 3. The education level has an influence on the relative
probability of being in latent classes Colruyt, Delhaize, Aldi-Lidl and Lidl rather than in
latent class Several. For example, having a licence, maitrise or doctorat makes a household
about 3 times more likely (than those with an “other” degree) to be in latent class Delhaize
rather than in class Several, about 2 times more likely to be in latent class Colruyt rather than
in latent class Several and about 3 times less likely to be in latent classes Aldi-Lidl and Lidl
rather than in latent class Several. Coefficients for latent classes GB-Carrefour, Carrefour
and Cora are not significantly different from 0: we can not conclude that the education level
influences the probability of being in one of these classes rather than in class Several. To
summarize, on the basis of the highest education level of the household, we can broadly
identify three sets of classes: (1) Delhaize and Colruyt, (2) Cora, GB-Carrefour, Carrefour
and Several, and (3) Aldi and Lidl-Aldi.

The estimated probabilities of being in each latent class given the highest education level
of the household are displayed in Table 4. The estimated probability of membership in latent
classes Colruyt and Delhaize increases with the level of the education level, while the opposite
trend can be observed in latent classes Aldi-Lidl and Lidl (this is similar to what is concluded
from LCA2.8).
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Table 3: Latent class membership regression parameter estimates from model LCA3.8. The
reference category of Education is “Other”. “Int.” is the intercept, “Sec.” is category
Secondaire, “Grad.” is category Graduat and “Lic.” is category Licence,Maitrise,Doctorat.

LC Coefficient exp(Coeff.) Std. error t value P (> |t|)
GB-Carr (Int.) 0.49 1.63 0.28 1.75 0.088

vs Sec. 0.06 1.06 0.29 0.20 0.841
Several Grad. 0.20 1.23 0.31 0.65 0.521

Lic. 0.29 1.33 0.33 0.86 0.393
Cora (Int.) -1.92 0.15 0.54 -3.55 0.001

vs Sec. 0.40 1.49 0.58 0.68 0.499
Several Grad. 0.47 1.60 0.61 0.77 0.443

Lic. 0.82 2.27 0.61 1.35 0.185
Colruyt (Int.) 1.11 3.04 0.25 4.49 0

vs Sec. 0.01 1.01 0.26 0.03 0.977
Several Grad. 0.47 1.59 0.28 1.69 0.100

Lic. 0.59 1.81 0.29 2.04 0.049
Delhaize (Int.) 0.93 2.53 0.25 3.75 0.001

vs Sec. 0.19 1.21 0.26 0.73 0.468
Several Grad. 0.72 2.05 0.28 2.56 0.015

Lic. 1.08 2.95 0.29 3.69 0.001
Carr. (Int.) 0.44 1.56 0.28 1.58 0.123

vs Sec. 0.12 1.12 0.28 0.41 0.685
Several Grad. 0.60 1.83 0.30 2.01 0.052

Lic. 0.56 1.75 0.32 1.77 0.085
Al.-Lidl (Int.) 1.41 4.11 0.25 5.76 0

vs Sec. -0.25 0.78 0.26 -0.94 0.351
Several Grad. -0.38 0.68 0.29 -1.33 0.191

Lic. -0.94 0.39 0.32 -2.95 0.005
Lidl (Int.) 0.27 1.31 0.29 0.95 0.346
vs Sec. -0.15 0.86 0.30 -0.51 0.614

Several Grad. 0.05 1.05 0.32 0.16 0.873
Lic. -0.97 0.38 0.40 -2.41 0.021
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Table 4: For each level of Education, estimated probabilities of being in each of the 8 latent
classes in model LCA3.8: P̂ (S = j|education = p). The modal classes are in bold.

Education GB-Carr. Cora Colr. Delh. Carr. Al.-Lidl Lidl Several
Autre 0.11 0.01 0.20 0.17 0.10 0.27 0.09 0.07 1

Secondaire 0.11 0.01 0.20 0.20 0.12 0.21 0.07 0.07 1
Graduat 0.10 0.01 0.24 0.26 0.14 0.14 0.07 0.05 1

Lic.,mait.,doct. 0.10 0.02 0.26 0.35 0.13 0.08 0.02 0.05 1

Table 5: Estimated effects of being a man (coefficients α) on the conditional probabilities in
model LCA3.8

Supermarket Coefficient exp(Coeff.) Std. error t value P (> |t|)
Aldi 0.08 1.09 0.24 0.35 0.732
Carrefour -0.34 0.71 0.11 -3.19 0.003
Colruyt -0.22 0.80 0.09 -2.56 0.015
Cora -0.14 0.87 0.24 -0.60 0.554
Delhaize 0.05 1.05 0.13 0.36 0.725
GB -0.08 0.92 0.21 -0.38 0.703
Lidl 0.11 1.11 0.13 0.78 0.440

Overall, the latent class with the smallest probability of membership is Cora, while the
preferred ones are Colruyt, Delhaize and Aldi-Lidl.

Finally, we consider the model linking the conditional probabilities P (Yim = 1|Si = j) =
1 − P (Yim = 2|Si = j) to the gender of the respondent. The estimated coefficients α can
be found in Table 5. The only significant differences between men and women exist for the
manifest variables Carrefour and Colruyt: the men are more likely than the women to cite
these supermarkets. This model should hence improve the accuracy of the classification of the
households into the latent classes: we expect that some men who were classified in latent class
Colruyt (resp. Carrefour) in LCA2.8 do not belong to this latent class in LCA3.8. Among
the 35 respondents belonging to Colruyt in LCA2.8 and to Aldi-Lidl in LCA3.8, there are 15
men and 20 women: the proportion of men is 43%, higher than the overall proportion of men
in the whole sample, 29%. Similarly, among the 40 respondents belonging to Carrefour in
LCA2.8 but not in LCA3.8, 14 (35%) are men.

4 Conclusions

4.1 Marketing conclusions

The strategy that we suggest allows one to analyze (self-reported or not) ratings of items.
More precisely, it identifies groups of individuals with the same pattern of responses, groups
of items which often receive the same rating, and links between these two sets of groups. This
methodology also takes into account the potential problem of response styles. Thanks to the
use of latent class analysis, which yields a large number of parameters, the identified clusters
of individuals can be deeply understood. This strategy can thus be useful in many different
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situations.
In order to illustrate its use, we have applied it to a marketing database about the prefer-

ences of Belgian households for supermarkets. We have identified eight groups of customers,
seven among which are clearly defined. A distinction has appeared between loyal households,
i.e. households which shop in only one supermarket with their highest frequency, and multi
households, i.e. those regularly visiting several different places. The multinomial logistic
regression model relating the latent class probabilities to the highest education level of the
household has highlighted a significant link between the classes, and hence the favourite super-
market(s), and the covariate. This strong association makes it possible to do some prediction
about the favourite supermarket, using only one variable which is easily observed: this can
be valuable information for marketing departments.

All these findings are consistent with preliminary analyses.

4.2 Latent class models for the analysis of preferences

One valuable advantage of latent class models in the analysis of ratings is the identification
of links between manifest variables: in this context, this feature is of paramount importance,
since the latent classes can contain individuals which do have several favourite items. The
simultaneous analysis of each manifest variable independently would not have provided the
same information.

Being able to relate the class membership to covariates is a clear improvement of the
extensions of the standard latent class model that we have considered. In the application of
these models to our database, this highlights a significant link between the highest education
level of the household and the classes, hence the favourite supermarket.

However, a limitation of this model must also be mentioned: as latent class analysis
involves estimating a large number of parameters, the number of covariates which can be
included in the model is limited. Moreover, in our case, with a rather large number of latent
classes (Qu et al. (1996) consider 2 classes, Bandeen-Roche et al. (1997), 3 classes, Bandeen-
Roche et al. (1999), 5 classes and Huang and Bandeen-Roche (2004), 4 classes), and discrete
covariates which have to be replaced by several binary indicators, this restriction is really a
handicap. As we wanted to be able to estimate an even more complex model (requiring more
parameters), we restricted ourselves to one covariate. As a consequence, although the class
membership is, to a certain extent, better understood, such a model does not allow us to
make effective prediction. This is the price to pay in order to be able to deeply understand
the structure of the latent classes: the large number of conditional probabilities allows one to
precisely characterize each group. This is a strength of our approach, which distinguishes it
from data mining algorithms, which can be efficient in prediction, but are often used as black
boxes.

We can nevertheless imagine a possible way to overcome the complexity problem: we
could take the posterior latent class membership provided by a latent class model, and train
a data mining algorithm on the same data to predict this nominal variable. We mentioned in
Section 2 that such an approach leads to biased estimates (compared to the estimation of a
model which directly integrates covariates) but, as the introduction of the covariate Education
did not deeply modify the interpretation of the latent classes, this approach would be worth
trying.

Finally, the most flexible model (the one with covariate effects on both the conditional and
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the latent class probabilities) seems to offer only marginal improvements in our case, perhaps
because the differences in response styles can not be explained very well by the covariates we
decided to consider. A latent class model with random effect could be more useful in this
situation. On the other hand, we are not aware of the existence of such a model which also
integrates covariates to explain the latent class membership. A three-step procedure is also
possible, but with the risk of obtaining biased estimates.

Another remark concerns the computational aspects of this study. In the papers presenting
the models we have estimated, the sample size is always relatively small (1643 in Bandeen-
Roche et al. (1999) for example). In our case, the estimation of the standard latent class
models was rapid for a small number of latent classes, and took approximately two hours for
LCA1.8 (for 20 runs, with different initial values). The estimation of models with covariate
effects on the latent class probabilities was quicker, since it was provided with the results of
the other model as initial values. However, estimating model LCA3.8 took 13 hours, which is
not really suited to exploratory analyses. Implementing parts of our R function in C would
reduce computing time substantially.

4.3 Limitations of our approach and outlook

The methodology we have decided to pursue in order to analyze ratings is one approach among
many possible ones. It has several advantages, but some drawbacks too.

The first point which can be brought into question is the family of models we have used,
i.e. latent class analysis. We chose it after having reviewed several other methods, but many
of them would be worth applying to the type of data we considered. Moreover, latent class
models are well suited when the main objective is the understanding of relations between
manifest variables. However, as already mentioned, these models are not very efficient for
prediction.

Discarding all individuals with missing values in either the manifest variables or the co-
variates is also questionable since this amounts to losing information and possibly biasing the
results (as mentioned by Huang and Bandeen-Roche (2004) in the discussion at the end of
their paper). We have namely discovered that people with missing values differ from those
without missing value in their age profile7 (among others).

One possible alternative would consist in replacing the missing values in categorical vari-
ables either by one of the existing categories (through a decision tree for example) or by a
new category “missing”. This would allow us to retain all individuals in the analysis, but this
approach could also add noise to the results. As far as the manifest variables (the ratings)
are concerned, since we transform them to binary indicators, we could imagine assigning the
lowest value to items whose rating is missing, and possibly retaining individuals with no more
than a given number of missing values in the original ratings.

We also decided to transform the manifest variables into binary indicators, in order to
obtain relative (and hence comparable) preferences among households. We could have used
the original ordinal ratings (to preserve all information) in a latent class model with random
effects (to take into account the dependence between scores assigned by one respondent).
However, in such a case, it would be more interesting to treat the ratings as ordinal variables,
since they provide more information than nominal ones. The model suggested by Albert

7P-value of the Pearson’s chi-squared test: < 2.2 · 10−16.
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(2007), a latent class model with random effects to take into account dependence between
ordinal manifest variables, could be a solution.

One can also wonder whether the number of latent classes we decided to consider is
optimal. On the one hand, the BIC criterion opted for a 9-class model. On the other hand,
the BIC value becomes rather stable from 6 latent classes: using an even more parsimonious
criterion might result in a model with fewer latent classes.

Finally, in the most flexible models, we have chosen one (and only one) covariate to include
on the basis of an independence test between the latent classes from the first model and the
different covariates that we were considering. It would be worth finding a stepwise approach
able to automatically select the most relevant features from a large set of possible ones (as
do, for example, backward and forward selections in multiple linear regression).
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Appendix: R function covLCA

In the following we describe the arguments and outputs of the new R function covLCA. Some
elements of the description are adopted from the reference manual of package poLCA (Linzer
and Lewis, 2011a) and from Linzer and Lewis (2011b)).

The input arguments are as follows:

covLCA(formula1, formula2, data, nclass=2, maxiter=1000, tol=1e-10,
beta.start=NULL,alpha.start=NULL,gamma.start=NULL,beta.auto=TRUE,
alpha.auto=TRUE,gamma.auto=TRUE,nrep=1,verbose=TRUE,calc.se=TRUE)

• formula1: the formula where the dependent variables are the manifest variables, grouped
by cbind(), and the independent variables are the covariates for the latent class prob-
abilities.

• formula2: the formula where the dependent variables are the manifest variables, grouped
by cbind(), and the independent variables are the covariates for the conditional prob-
abilities.

• data: a dataframe containing all variables appearing in formual1 and formula2. Man-
ifest variables must contain only integer values, and must be coded with consecutive
values from 1 to the maximum number of outcomes for each variable. All missing val-
ues should be entered as NA and all cases containing missing values (in the manifest
variables or in the covariates) are removed before estimating the model.

• nclass: the number of latent classes assumed in the model.

• maxiter: the maximum number of iterations through which the estimation algorithm
will cycle.
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• tol: A tolerance value for judging when convergence has been reached. When the one-
iteration change in the estimated log-likelihood is less than tol, the estimation algorithm
stops updating and considers the maximum log-likelihood to have been found.

• beta.start: a vector of parameters βjp to be used as the starting values for the es-
timation algorithm. There is one parameter for each pair latent class-covariate (the
indice of the covariate moving faster), except the last class, considered as the reference,
for which βJp = 0∀p. The default is NULL, leading either to an automatic search for
“reasonable” initial values (when beta.auto=TRUE, the default) or to the generation
of random starting values (when beta.auto=FALSE). Note that if nrep > 1, then any
user-specified beta.start values are only used in the first of the nrep attempts.

• alpha.start: an M × L(K − 1) matrix of parameters αmlk to be used as the starting
values for the estimation algorithm. Rows correspond to manifest variable m. Within
each row, columns correspond to covariates l and categories of manifest variables k
(except the last category, for which αmlKm = 0), the indice of the latter moving faster.
The default is NULL, leading either to an automatic search for “reasonable” initial values
(when alpha.auto=TRUE, the default) or to the generation of random starting values
(when alpha.auto=FALSE). Note that if nrep > 1, then any user-specified alpha.start
values are only used in the first of the nrep attempts.

• gamma.start: an M × J(K − 1) matrix of parameters γmjk to be used as the starting
values for the estimation algorithm. Rows correspond to manifest variable m. Within
each row, columns correspond to latent classes j and categories of manifest variables k
(except the last category, for which γmjKm = 0), the indice of the latter moving faster.
The default is NULL, leading either to an automatic search for “reasonable” initial values
(when gamma.auto=TRUE, the default) or to the generation of random starting values
(when gamma.auto=FALSE). Note that if nrep > 1, then any user-specified gamma.start
values are only used in the first of the nrep attempts.

• beta.auto: logical, indicating whether covLCA() should calculate “reasonable” initial
values for parameters β. If TRUE, the approach advised by Huang and Bandeen-Roche
(2004) is applied: a standard latent class model assuming nclass latent classes is esti-
mated, then each individual is assigned to a class with the posterior probabilities of class
membership from this model, and finally a multinomial logistic regression model relating
the latent classes to covariates x is fitted, whose coefficient estimates give initial esti-
mates of β. If FALSE, either random initial values are generated (if beta.start=NULL)
or values provided by the user are used.

• alpha.auto: logical, indicating whether covLCA() should calculate “reasonable” initial
values for parameters α. If TRUE, the approach advised by Huang and Bandeen-Roche
(2004) is applied: M different multinomial logistic regression models for (Yi1, zi1), . . .,
(YiM , ziM ) are fitted and the corresponding estimated coefficients are initial values for
parameters α. If FALSE, either random initial values are generated (if alpha.start=NULL)
or values provided by the user are used.

• gamma.auto: logical, indicating whether covLCA() should calculate “reasonable” initial
values for parameters γ. If TRUE, the approach advised by Huang and Bandeen-Roche
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(2004) is applied: M different multinomial logistic regression models for (Yi1, zi1), . . .,
(YiM , ziM ) are fitted and the corresponding estimated coefficients are initial values for
parameters γ. If FALSE, either random initial values are generated (if gamma.start=NULL)
or values provided by the user are used.

• nrep: number of times the model is estimated, using different values of beta.start,
alpha.start and gamma.start. The default is one. Setting nrep> 1 automates the
search for the global (rather than just a local) maximum of the log-likelihood function.
covLCA() returns the parameter estimates corresponding to the model with the greatest
log-likelihood.

• verbose: logical, indicating wheter covLCA() should output to the screen the results
of the model.

• calc.se: logical, indicating whether covLCA() should calculate the standard errors of
the estimated parameters βjp, αmlk and γmjk.

The output of function covLCA() is a list containing the following elements:

• llik: the maximum value of the log-likelihood of the estimated model.

• attempts: a vector containing the maximum loglikelihood values found in each of the
nrep attempts to fit the model.

• beta.start: a vector containing the initial values for parameters β when such values
were provided by the user (in beta.start) or when they were randomly generated
(when beta.start=NULL and beta.auto=FALSE).

• alpha.start: a vector containing the initial values for parameters α when such values
were provided by the user (in alpha.start) or when they were randomly generated
(when alpha.start=NULL and alpha.auto=FALSE).

• gamma.start: a vector containing the initial values for parameters γ when such values
were provided by the user (in gamma.start) or when they were randomly generated
(when gamma.start=NULL and gamma.auto=FALSE).

• beta.auto: logical, indicating whether the user asked for “reasonable” initial estimates
of parameters β to be automatically computed (with the argument beta.auto).

• alpha.auto: logical, indicating whether the user asked for “reasonable” initial estimates
of parameters α to be automatically computed (with the argument alpha.auto).

• gamma.auto: logical, indicating whether the user asked for “reasonable” initial estimates
of parameters β to be automatically computed (with the argument gamma.auto).

• beta.initAuto: a vector containing the initial values for parameters β when “reason-
able” values are automatically computed (when beta.auto=TRUE).

• alpha.initAuto: a vector containing the initial values for parameters α when “reason-
able” values are automatically computed (when alpha.auto=TRUE).
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• gamma.initAuto: a vector containing the initial values for parameters γ when “reason-
able” values are automatically computed (when gamma.auto=TRUE).

• probs: an N × M × K × J array containing the estimated conditional probabilities
p̂imkj = p̂mkj(γmj +z′imαm), where the first to fourth dimensions correspond to individ-
uals, manifest variables, categories of manifest variables and latent classes, respectively.

• prior: anN×J matrix containing the estimated latent class probabilities π̂ij = π̂j(x′iβ),
where rows correspond to individuals and columns, to latent classes.

• posterior: an N×J matrix containing the estimated posterior latent class probabilities
hij(φ̂), where rows correspond to individuals and columns to latent classes.

• predclass: a vector of length N of predicted class memberships, by modal assignment.

• P: the respective size of each latent class, equal to the mean of the priors.

• numiter: the number of iterations required by the estimation algorithm to achieve
convergence.

• coeffBeta: an P ×J matrix of estimated βpj , where rows correspond to covariates and
columns, to latent classes.

• param.se: a vector containing the standard error of each estimated parameter, in the
following order: βjp, γmjk, αmlk where the last indice always moves faster.

• param.V: the covariance matrix of the coefficient estimates (in the same order as in
param.se:).

• coeffGamma: an M × J(K − 1) matrix of estimated parameters γmjk. Each row corre-
sponds to manifest variable m. Within each row, columns correspond to latent classes j
and categories of manifest variables k (except the last category, for which γmjKm = 0),
the indice of the latter moving faster.

• coeffAlpha: an M × L(K − 1) matrix of estimated parameters αmlk. Each row cor-
responds to manifest variable m. Within each row, columns correspond to covariates l
and categories of manifest variables k (except the last category, for which αmlKm = 0),
the indice of the latter moving faster.

• meanProbs: an M ×K×J array of estimated conditional probabilities evaluated at the
sample mean of the covariates. The first to third dimensions correspond to manifest
variables, categories of manifest variables and latent classes, respectively.

• eflag: logical, error flag. TRUE if estimation algorithm needed to automatically restart
with new initial parameters, otherwise FALSE. A restart is caused in the event of com-
putational/rounding errors that result in nonsensical parameter estimates.

• npar: the number of estimated parameters.

• aic: value of the AIC criterion for the estimated model.

• bic: value of the BIC criterion for the estimated model.
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• Nobs: number of fully observed cases.

• x: a dataframe containing the covariates for the latent class probabilities.

• z: a dataframe containing the covariates for the conditional probabilities.

• y: a dataframe containing the manifest variables.

• maxiter: the maximum number of iterations of the estimation algorithm.

• resid.df: the number of residual degrees of freedom, equal to the lesser of N and MK,
minus npar.

• time: computation time of model estimation.
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