Statistics for spectral tail processes of heavy-tailed Markov chains

Michał Warchoł and Johan Segers

ISBA, UCL

September 20, 2013

Modelling temporal tail dependence

- Time series $({m{X}}_t)_{t\in\mathbb{Z}}$
- Strictly stationary
- Heavy–tailed
- What happens after an extreme event?

Tools for measuring extremal dependence

- Temporal dependence:
 - the extremal index: measure of clustering in the extremes,
 - the tail dependence coefficient: $\lim_{x\to\infty} \Pr(\|\boldsymbol{X}_t\| > x \mid \|\boldsymbol{X}_0\| > x).$
 - $\lim_{x \to \infty} \Pr\left(\|\boldsymbol{\Lambda}_t\| \ge x \mid \|\boldsymbol{\Lambda}_0\| \ge x\right).$
- Cross-sectional and temporal dependence:
 - the extremogram: a correlogram for extreme events (Davis and Mikosch, 2009),
 - the tail process: limit in law of the process $(x^{-1}\boldsymbol{X}_t \mid \|\boldsymbol{X}_0\| > x)$ (Basrak and Segers, 2009).

Statistics for spectral processes of heavy-tailed M. chains

- 1 When does the tail process exists?
 - Regular variation
 - Examples
- 2 The tail process
 - What is it?
 - Why is it useful?
 - Examples
- Tail processes of heavy-tailed Markov chains
 - Probabilistic overview
 - Statistics
 - Numerical simulations

Regular variatior Examples

Statistics for spectral processes of heavy-tailed M. chains

Summarv

1 When does the tail process exists?

- Regular variation
- Examples
- 2 The tail process
 - What is it?
 - Why is it useful?
 - Examples
- 3 Tail processes of heavy-tailed Markov chains
 - Probabilistic overview
 - Statistics
 - Numerical simulations

When does the tail process exists?

The tail process Tail processes of heavy-tailed Markov chains Summary Regular variation Examples

Regularly varying random vectors

A random vector \boldsymbol{X} in \mathbb{R}^d is regularly varying with index $\alpha > 0$ if

$$(\mathbf{x}^{-1}\mathbf{X} \mid \|\mathbf{X}\| > \mathbf{x}) \stackrel{d}{\rightarrow} \mathbf{Y} = \mathbf{\Theta} \|\mathbf{Y}\|,$$

as $x \to \infty$, with Θ and $\|\mathbf{Y}\|$ being independent and

$$\mathsf{Pr}(\|\mathbf{Y}\| > y) = y^{-\alpha} \text{ for } y \ge 1.$$

Regular variation Examples

Regularly varying sequences

The time series $(X_t)_{t \in Z}$ is said to be jointly regularly varying with index $\alpha > 0$ if for all integers $k \leq I$ the random vector (X_k, \ldots, X_I) is regularly varying with index α .

Regular variation Examples

Wide range of stationary regularly varying sequences

- X_t i.i.d. $RV(\alpha) \Leftrightarrow X$ is RV with the same index α
- Linear processes $X_t = \sum_{j=0}^{\infty} \phi_j Z_{t-j}$ with RV i.i.d real-valued noise Z_t under conditions on the deterministic sequence ϕ_j
- Models for returns $X_t = \sigma_t Z_t$, where σ_t is stationary non-negative sequence and Z_t is i.i.d.
 - Stochastic volatility where σ_t and Z_t and are independent under conditions: $E\sigma^{\alpha+\delta} < \infty$ for some $\delta > 0$ and Z_t is i.i.d $RV(\alpha)$
 - GARCH model
- Stochastic recurrence equations $X_t = A_t X_{t-1} + B_t$ where (A_t, B_t) is an i.i.d. \mathbb{R}^2 -valued sequence

What is it? Why is it useful? Examples

Statistics for spectral processes of heavy-tailed M. chains

- When does the tail process exists?
 - Regular variation
 - Examples

2 The tail process

- What is it?
- Why is it useful?
- Examples
- 3 Tail processes of heavy-tailed Markov chains
 - Probabilistic overview
 - Statistics
 - Numerical simulations

What is it? Why is it useful? Examples

The tail process

The tail process $(\mathbf{Y}_t)_{t\in\mathbb{Z}}$ of $(\mathbf{X}_t)_{t\in\mathbb{Z}}$ is defined as the limit in law of

$$(x^{-1}\boldsymbol{X}_r,\ldots,x^{-1}\boldsymbol{X}_s \mid \|\boldsymbol{X}_0\| > x) \stackrel{d}{\to} (\boldsymbol{Y}_r,\ldots,\boldsymbol{Y}_s),$$

as
$$x \to \infty$$
, for $r, s \in \mathbb{Z}$ with $r \leq s$.

Assume that $(X_t)_{t \in \mathbb{Z}}$ is jointly regularly varying with index $\alpha > 0$. Then, there exists $(Y_t)_{t \in \mathbb{Z}}$ with $\Pr(||Y_0|| > y) = y^{-\alpha}$ for $y \ge 1$.

What is it? Why is it useful? Examples

The spectral tail process

Writing
$$\Theta_t = \mathbf{Y}_t / \|\mathbf{Y}_0\|$$
 for $t \in \mathbb{Z}$ gives

$$\left(\frac{\boldsymbol{X}_r}{\|\boldsymbol{X}_0\|},\ldots,\frac{\boldsymbol{X}_s}{\|\boldsymbol{X}_0\|}\mid\|\boldsymbol{X}_0\|>x\right)\overset{d}{\to}\left(\boldsymbol{\Theta}_r,\ldots,\boldsymbol{\Theta}_s\right).$$

The process $(\Theta_t)_{t \in \mathbb{Z}}$ is the spectral tail process of $(X_t)_{t \in \mathbb{Z}}$ and is independent of $||Y_0||$.

What is it? Why is it useful? Examples

Reversing time

Restricting Θ_t i.e. the limit in law

 $(\boldsymbol{X}_t / \| \boldsymbol{X}_0 \| \mid \| \boldsymbol{X}_0 \| > x)$

- t ≥ 0 gives forward and
- t ≤ 0 gives backward spectral tail process.

The relation between those two can be characterized by the following $(d = 1, X_t > 0, s > 0)$:

 $\Pr\left(\Theta_{s} > c\right) = \mathsf{E}\left\{\Theta_{-s}^{\alpha}\mathbf{1}\left(\Theta_{-s} < 1/c\right)\right\}, \ c > 0.$

What is it? Why is it useful? Examples

The tail process embeds known tail asymptotic quantities

• The tail dependence coefficient:

 $\lambda_t := \lim_{u \to \infty} \Pr\left(\|\boldsymbol{X}_t\| > u \mid \|\boldsymbol{X}_0\| > u \right) = \mathsf{E}\left\{ \min\left(\|\boldsymbol{\Theta}_t\|^{\alpha}, 1 \right) \right\}.$

• The extremogram:

$$\begin{aligned} \gamma_{AB}(h) := &\lim_{n \to \infty} n \operatorname{cov} \left(\mathbf{1}_{\left\{a_n^{-1} \mathbf{X}_0 \in A\right\}}, \mathbf{1}_{\left\{a_n^{-1} \mathbf{X}_h \in B\right\}} \right) \\ &= & \operatorname{Pr} \left(\mathbf{Y}_h \in B, \ \mathbf{Y}_0 \in A \right). \end{aligned}$$

• The extremal index:

$$\begin{aligned} \theta := & \lim_{r \to \infty} \lim_{u \to \infty} \Pr\left(\max_{t=1,\dots,r} \|\boldsymbol{X}_t\| \le u \mid \|\boldsymbol{X}_0\| > u\right) \\ &= & \mathsf{E}\left(\sup_{t \ge 0} \|\boldsymbol{\Theta}_t\|^{\alpha} - \sup_{t \ge 1} \|\boldsymbol{\Theta}_t\|^{\alpha}\right). \end{aligned}$$

• Cross-sectional and temporal dependence...

What is it? Why is it useful? Examples

The spectral tail process for particular time series

• For i.i.d. time series:

$$\mathbf{Y}_t = \mathbf{\Theta}_t = 0$$
 when $t \neq 0$.

• For the stochastic recurrence equation

$$\boldsymbol{X}_t = \boldsymbol{A}_t \boldsymbol{X}_{t-1} + \boldsymbol{B}_t, \quad t \in \mathbb{Z},$$

for some i.i.d. sequence (A_t, B_t) , $t \in \mathbb{Z}$, of random $d \times d$ matrices A_t and random d-dimensional vectors B_t :

$$\boldsymbol{\Theta}_t = \boldsymbol{A}_t^* \cdots \boldsymbol{A}_2^* \boldsymbol{A}_1^* \boldsymbol{\Theta}_0, \quad t > 0.$$

Probabilistic overview Statistics Numerical simulations

Statistics for spectral processes of heavy-tailed M. chains

- 1 When does the tail process exists?
 - Regular variation
 - Examples
- 2 The tail process
 - What is it?
 - Why is it useful?
 - Examples

3 Tail processes of heavy-tailed Markov chains

- Probabilistic overview
- Statistics
- Numerical simulations

Probabilistic overview Statistics Numerical simulations

When X_t is a positive-valued Markov chain

The spectral process can be fully characterized only by Θ_1 since

$$\Theta_0=1, \ \Theta_{\pm t}=\prod_{i=1}^t A_{\pm i}, \quad t\geq 1,$$

where $A_1, A_{-1}, A_2, A_{-2}, \ldots$ are independent. Moreover, for all integers $t \ge 1$, $\mathcal{L}(A_t) := \nu$ and $\mathcal{L}(A_{-t}) := \nu^*$ and

$$\mathcal{L}(X_1/X_0 \mid X_0 > x) \rightarrow \mathcal{L}(\Theta_1) = \nu,$$

$$\mathcal{L}(X_{-1}/X_0 \mid X_0 > x) \rightarrow \mathcal{L}(\Theta_{-1}) = \nu^*.$$

The measures ν and ν^* are related with each other through

$$\Pr\left(\Theta_1 > c\right) = \mathsf{E}\left\{\Theta_{-1}^{\alpha} \mathbf{1}\left(\Theta_{-1} < 1/c\right)\right\}, \ c > 0.$$

Probabilistic overview Statistics Numerical simulations

The forward estimator

The forward estimator is an empirical version of

$$(X_1/X_0 \mid X_0 > x) \stackrel{d}{\rightarrow} (\Theta_1),$$

and is defined by:

$$\widehat{\bar{F}}_{n}(c) = \frac{\sum_{t=1}^{n-1} \mathbf{1} (X_{t+1}/X_{t} > c, X_{t} > u_{n})}{\sum_{t=1}^{n} \mathbf{1} (X_{t} > u_{n})}.$$

Probabilistic overview Statistics Numerical simulations

The backward estimator

The backward estimator exploits the time-change formula

$$\Pr\left(\Theta_{1} > c\right) = \mathsf{E}\left\{\Theta_{-1}^{\alpha}\mathbf{1}\left(\Theta_{-1} < 1/c\right)\right\}, \ c > 0,$$

and is defined by:

$$\widehat{F}'_{n}(c) = \frac{\sum_{t=2}^{n} (X_{t-1}/X_{t})^{\alpha} \mathbf{1} (X_{t-1}/X_{t} < 1/c, X_{t} > u_{n})}{\sum_{t=1}^{n} \mathbf{1} (X_{t} > u_{n})}.$$

Probabilistic overview Statistics Numerical simulations

The mixture estimator

The mixture estimator is a convex combination of the forward estimator and the backward estimator, i.e.:

$$\widehat{\overline{F}}_{n}^{\prime\prime}(c) = \alpha(c)\,\widehat{\overline{F}}_{n}^{\prime}(c) + \beta(c)\,\widehat{\overline{F}}_{n}(c)\,,\quad \alpha(c) + \beta(c) = 1.$$

This may bring further reduction in asymptotic variance.

Probabilistic overview Statistics Numerical simulations

Asymptotic normality of the estimators

Denote $v_n = \Pr(X_t > u_n)$,

• The forward estimator

$$(nv_n)^{1/2} \left\{ \widehat{\bar{F}}_n(c) - \Pr(X_1/X_0 > c \mid X_0 > u_n) \right\} \stackrel{n \to \infty}{\longrightarrow} N\left\{ 0, \omega(c) \right\}$$
$$\omega(c) = \Pr(\Theta_1 > c) \Pr(\Theta_1 \le c)$$

• The backward estimator

$$(nv_n)^{1/2} \left\{ \widehat{F}'_n(c) - \Pr(X_1/X_0 > c \mid X_0 > u_n) \right\} \stackrel{n \to \infty}{\longrightarrow} N\left\{ 0, \omega'(c) \right\}$$
$$\omega'(c) = \mathbb{E}\left\{ \Theta_1^{-\alpha} \mathbf{1}\left(\Theta_1 > c\right) \right\} - \left\{ \Pr(\Theta_1 > c) \right\}^2$$

• The mixture estimator

$$(nv_n)^{1/2} \left\{ \widehat{\overline{F}}_n''(c) - \Pr\left(X_1/X_0 > c \mid X_0 > u_n\right) \right\} \xrightarrow{n \to \infty} N\left\{ 0, \omega''(c) \right\}$$

Probabilistic overview Statistics Numerical simulations

Setting – skip this slide?

At 12:29 PM, people will just be longing for sandwiches. Skip! We consider the following stochastic recurrence equation:

• $X_t = A_t X_{t-1} + B_t, t \in \mathbb{Z}$,

•
$$A_t = \tan{(c_0 U_t)}, B_t = V_t$$
,

- $(U_t)_{t\in\mathbb{Z}}$, $(V_t)_{t\in\mathbb{Z}}$ i.i.d. uniform (0, 1),
- $c_0 \approx 1.16556$,
- X_t is stationary and regularly varying with $\alpha = 2$,
- $\mathcal{L}(\Theta_1) = \mathcal{L}(A_1)$
- n=10000,
- $u_n = q(99\%)$
- $nv_n = 1000$ extremes,
- 1000 repetitions.

Probabilistic overview Statistics Numerical simulations

Results I – MC approximation of the asymptotic variance

Forward: $\hat{\bar{F}}_n(c)$

Backward: $\hat{\bar{F}}'_{n}(c)$

Probabilistic overview Statistics Numerical simulations

Results II – MC approximation of the asymptotic variance

 $\begin{array}{l} \text{Mixture: } \widehat{\textit{F}}_{n}^{''}(\textit{c})\\ \text{We set } \alpha\left(\textit{c}\right) = \widehat{\textit{F}}\left(\textit{c}\right) \text{ and } \beta\left(\textit{c}\right) = 1 - \widehat{\textit{F}}\left(\textit{c}\right). \end{array}$

Message

- The tail process models cross-sectional and temporal dependence of extremes of stationary time series.
- The tail process exists if the underlying time series is regularly varying.
- The radial component $(||\mathbf{Y}_0||)$ and the angular component (Θ_t) are independent.
- The forward and the backward tail processes are related with each other.
- When the underlying time series is Markovian then the spectral tail process can be characterize by Θ₁.
- We propose asymptotically normal estimators for the law of $\Theta_1.$

Outlook

- How to choose weights of the mixture estimator?
- What to do with the unknown index of regular variation α ?
- How to estimate Θ_t and describe asymptotic behaviour of the estimator?
- How to model the tail process when we no longer assume that $X_t > 0$?
- How to tackle *d* > 1 case and cross-sectional analysis after extreme shocks?

Basrak, B., Segers, J. (2009), Regularly varying multivariate time series. Stochastic Processes and Their Applications, 119, 1055–1080. Janssen, A., Segers, J. (2013), Markov tail chains Available on http://arxiv.org/abs/1304.7637. Drees, H., Rootzén, H. (2010), Limit theorems for empirical processes of cluster functionals. The Annals of Statistics. 38. 2145–2186. Davis, R.A., Mikosch, T. (2009), The Extremogram: a Correlogram for Extreme Events.

Bernoulli, 15, 977-1009.

Thank you michal.warchol@uclouvain.be

