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Introduction

Introduction to cure models

I Common hypothesis in classical survival models :

↪→ Any observed subject will experience the monitored event if the
follow up is sufficiently long.

I Realistic assumption ?

↪→ How to deal with subjects who will never experience the event of
interest ?

⇒ Cure models incorporate the unknown proportion of immune subjects
in survival models.
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Introduction

Introduction to cure models

I They are two well known families of cure models :

I The mixture models (Berkson and Gage 1952 ; Farewell 1982 and
1986 ; Sy and Taylor 2000, for example) ;

I The promotion time models (Tsodikov 1998 ; Chen Ibrahim and Sinha
1999 ; Zeng, Yin and Ibrahim (2006) ; Liu and Shen (2009), for
example).

I Some authors have also defined unified approaches
(Yin and Ibrahim 2005 ; Cooner and al. 2007, for example).
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The promotion time model

The promotion time model

The promotion time model has a biological interpretation :

I Each subject is exposed to N ∼ Pois(θ) carcogenic cells.

I Let Y be the incubation time of one cell (Y is often called
latent event time).

I Assumptions :
I The cancer mass of each cell is detected independently from each other.
I Only one cell needs to be detected for subject to fail.

⇓

I Y1, ...,YN are independent with a common distribution F (t).
I The observed failure time is defined as T = mini(Yi).
I If N = 0, the subject is not exposed and is considered as cured.
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The promotion time model

The promotion time model

I We enter the covariates through :
I The mean parameter of the number N of carcogenic cells :

θ(x) = exp(β0 + x′β)

I The distribution of the latent event times F (t|z) using a Cox PH
model :

h(t|z) = h0(t) exp(z′γ) ; S(t|z) = S0(t)exp(z′γ)

I Unconditional (on N) population survival function :

S∗(t|x, z) = exp [−θ(x)F (t|z)]

= exp
[
− exp

(
β0 + x′β

) (
1− S0(t)exp(z′γ)

)]
(1)
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The promotion time model

The promotion time model : Identification issue

I Usual assumptions :

i) The vector z of covariates does not include an intercept to ensure the
identifiability of the Cox PH model.

ii) The baseline distribution function F0(t) = 1− S0(t) is a proper
distribution function : limt→∞F0(t) = 1

I Under i) and ii) we can show that :

A) If the follow up of the study is sufficently long then model (1) is
identifiable.

B) If the follow up of the study is not sufficently long then model (1) is not
identifiable unless vectors x and z do not share the same components.
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The promotion time model

The promotion time model : Remarks

I S∗(t|x, z) is an improper survival function :

limt→∞S∗(t|x, z) = exp
[
− exp

(
β0 + x′β

)]
> 0

I Remember that if the subject is not exposed to any carcogenic cell
(if N = 0) then (s)he is considered as cured.

↪→ The probability of being cured is :

P(N = 0) = exp [−θ (x)]

= exp
[
− exp

(
β0 + x′β

)]
= lim

t→∞
S∗(t|x, z)
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Estimation

Estimation

I We estimate the latent distribution F (t|z) of (1) using a linear
combinaison of cubic B-splines on log(h0(t)) :

ĥ0(t) = exp

(
K∑

k=1

bk(t)φk

)
= exp (Btφ)

where (bk(.), k = 1, ...K ) denote the cubic B-splines basis associated
to a predefined number of equidistant knots defined on [0, tRcens ],
where tRcens is the upper bound of the follow up.
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Estimation

Estimation

I Knowing the relation between the survival and the hazard functions,
we obtain the estimation of the baseline survival function :

Ŝ0(t) = exp

(
−
∫ t

0
exp (Buφ) du

)
↪→ The integral in this expression has no analytic form and needs to
be evaluated numerically. We use the rectangle method.
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Estimation

Estimation : Rectangle method

I Partition of [0, tRcens ] into J small intervals of equal width :
Jj = [τj−1, τj ] where 0 = τ0 < τ1 < ... < τJ = tRcens .

I Define
I The middle of the j th interval : uj =

τj−τj−1

2 ;

I The length of the j th interval : δj = τj − τj−1

↪→ The baseline survival function can be approximated by :

Ŝ0(t) ≈ exp

− j(t)∑
j=1

[
exp

(
Bujφ

)]
δj


where j(t) corresponds to the interval containing t.
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Estimation

Regularisation

I Roughness penalty : We choose a large number (say K ) of B-splines
and countrebalance the flexibility by introducing a penalty on finite
differences of adjacent B-spline parameters :
τ
∑

k(∆rφk)2 = τφ′D′Dφ, where τ is the penalty parameter. (Eilers
and Marx 1996)

I For example, when we use a third order penalty, the matrix D is given
by :

D =


1 −3 3 −1 0 . . . 0
0 1 −3 3 −1 . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 0 . . . 1 −3 3 −1
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Estimation

Graphical illustrations

I Number of knots : 12

I bk(t) > 0 for only 3 values
of k

I blue curves ≡ Btφ̂

I red curve ≡ Estimation of
log(h0(t))
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Estimation

Likelihood

I Contribution of the i th subject to the likelihood :

L(Di ,Φ) = Ŝ∗(ti |xi , zi )(ĥ∗(ti |xi , zi ))νi

where

I Di = (ti , νi , xi, zi) ;

I νi is the event indicator ;

I Φ is the set of all parameters specific to the model ;

I Ŝ∗(t|x, z) is the survival function defined in (1) where the baseline
survival function S0(t) was substituted by Ŝ0(t) ;

I ĥ∗(t|x, z) is the corresponding hazard function.
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Bayesian analysis

Bayesian model

I In a Bayesian setting, the roughness penalty is translated into a prior
distribution for φ :

π(φ|τ) ∝ τ
ρ(P)

2 exp
(
−τ

2
φ′Pφ

)
where P = D′D

I We use a common non-informative prior for τ :

π(τ) ∝ G (a(= 1), b(= 10−4))

I We use an improper uniform prior for all the regression parameters :

π(βi ) ∝ 1 ∀i ∈ Iβ

π(γj) ∝ 1 ∀i ∈ Iγ
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Bayesian analysis

Posterior distribution

I Using the Bayes’ theorem, the joint posterior distribution is given by :

π(φ, τ, β0,β,γ|D, I ) ∝ L(D,Φ)π(φ|τ)π(τ)

I Only the conditional posterior distribution for the penalty parameter τ
comes from a well known family :

π(τ |φ,D, I ) ∝ G

(
a +

ρ(P)

2
, b +

φ′Pφ

2

)
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Bayesian analysis

MCMC algorithm

I Gibbs step for τ ;

I Adaptive univariate Metropolis step for φ, β0, β and γ
(Haario et Al. 2001) ;

I Experience shows that the mixing of the posterior chain of the spline
parameters can be very slow.

↪→ Applying the adaptive Metropolis step on a reparametrized
posterior distribution can improve the mixing of the chain ;

↪→ We estimate the correlation structure of the spline parameters
using the link between survival data and the Poisson GLM ;

↪→ We reparametrize the posterior distribution of the spline
parameters using the obtained estimation.
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Simulation Study

Set up

I The baseline hazard function h0(t) is related to a Weibull distribution
with mean 10.8 and standard deviation 5.64

I 2 covariates are taken into account :

W1 ∼ N(0, 1) and W2 ∼ B(1, 0.5)

I Both covariates enter through the parameter θ and through the Cox
PH model : x = (W1,W2) = z

I Sample size : n = 500

I Number of replications : S = 200

I Splines are defined on 12 knots and a 3rd order penalty is used
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Simulation Study

Investigated Scenarios

I In each scenario, a sufficient follow up is assumed.

Cured (%)
Cured censored
(%)

Suceptible
censored (%)

Global
censoring (%)

20% 0% 0% 0%

20% 47% 8% 18%

40% 0% 0% 0%

40% 46% 7% 25%
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Simulation Study

Results of the simulations : Regression parameters

I 20% of cured individuals

Global
censoring
(%)

Estimation L95% U95% ESE RMSE

0%

β0 = 0.65 0.624 0.396 0.888 0.129 0.017
β1 = 1.2 1.146 0.932 1.394 0.127 0.018
β2 = 0.5 0.521 0.227 0.809 0.144 0.021
γ1 = −1 -0.910 -1.169 -0.670 0.130 0.150
γ2 = 2.5 2.386 1.974 2.826 0.212 0.239

18%

β0 = 0.65 0.625 0.369 0.933 0.142 0.020
β1 = 1.2 1.170 0.932 1.437 0.133 0.018
β2 = 0.5 0.528 0.199 0.847 0.163 0.027
γ1 = −1 -0.941 -1.204 -0.679 0.137 0.143
γ2 = 2.5 2.411 1.971 2.884 0.237 0.256
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Simulation Study

Results of the simulations : Regression parameters

I 40% of cured individuals

Global
censoring
(%)

Estimation L95% U95% ESE RMSE

0%

β0 = 0.4 0.337 0.112 0.619 0.120 0.017
β1 = 1.75 1.620 1.384 1.889 0.132 0.032
β2 = −0.75 -0.668 -1.015 -0.352 0.182 0.040
γ1 = −1 -0.816 -1.082 -0.557 0.147 0.229
γ2 = 2.5 2.350 1.964 2.769 0.202 0.243

25%

β0 = 0.4 0.355 0.081 0.687 0.144 0.022
β1 = 1.75 1.635 1.365 1.929 0.144 0.032
β2 = −0.75 -0.659 -1.079 -0.316 0.208 0.048
γ1 = −1 -0.837 -1.134 -0.552 0.157 0.218
γ2 = 2.5 2.369 1.942 2.856 0.226 0.250
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Simulation Study

Conclusions of the simulations

I Regression parameters :

I The point estimates are quite similar ;

I The width of the confidence interval for each parameter increases when
we introduce right censoring ;

I For each parameter, the RMSE is quite similar whatever the considered
scenario.
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Simulation Study

Conclusion of the simulations

I Baseline survival function :

Figure: 20% of cured subjects. Left : Without right censoring ; Right : With right
censoring
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Simulation Study

Conclusion of the simulations

I Baseline survival function :

Figure: 40% of cured subjects. Left : Without right censoring ; Right : With right
censoring
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Further work

I Simulations using a bimodal distribution for the baseline distribution.

I Applying model (1) on a real data set.

I Can we find a covariates structure for F (t|z) such that model (1) is
identifiable without a sufficient follow up when x and z share some
components ?

I Generalization to interval censored data.

I Generalization to hierarchical data.
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