Estimation of the Latent Distribution in Cure Survival Models using a Flexible Cox Model

Vincent BREMHORST Philippe LAMBERT

Université catholique de Louvain (UCL) Institut de Statistique, Biostatistique et sciences Actuarielles (ISBA)

1 February 2013

Outline of the talk

Introduction

The promotion time model

Estimation

Bayesian analysis

Simulation Study

Outline of the talk

Introduction

The promotion time model

Estimation

Bayesian analysis

Simulation Study

Image: Image:

Introduction to cure models

Common hypothesis in classical survival models :

 \hookrightarrow Any observed subject will experience the monitored event if the follow up is sufficiently long.

Realistic assumption ?

 \hookrightarrow How to deal with subjects who will never experience the event of interest ?

 \Rightarrow **Cure models** incorporate the unknown proportion of immune subjects in survival models.

Introduction to cure models

They are two well known families of cure models :

- ► The mixture models (Berkson and Gage 1952; Farewell 1982 and 1986; Sy and Taylor 2000, for example);
- The promotion time models (Tsodikov 1998; Chen Ibrahim and Sinha 1999; Zeng, Yin and Ibrahim (2006); Liu and Shen (2009), for example).

 Some authors have also defined unified approaches (Yin and Ibrahim 2005; Cooner and al. 2007, for example).

Outline of the talk

Introduction

The promotion time model

Estimation

Bayesian analysis

Simulation Study

The promotion time model

The promotion time model has a biological interpretation :

- Each subject is exposed to $N \sim Pois(\theta)$ carcogenic cells.
- Let Y be the incubation time of one cell (Y is often called latent event time).
- Assumptions :
 - The cancer mass of each cell is detected independently from each other.
 - Only one cell needs to be detected for subject to fail.

₩

- $Y_1, ..., Y_N$ are independent with a common distribution F(t).
- The observed failure time is defined as T = min_i(Y_i).
- If N = 0, the subject is not exposed and is considered as cured.

The promotion time model

- We enter the covariates through :
 - ► The mean parameter of the number *N* of carcogenic cells :

$$\theta(\mathbf{x}) = \exp(\beta_0 + \mathbf{x'}\boldsymbol{\beta})$$

The distribution of the latent event times F(t|z) using a Cox PH model :

$$h(t|\mathbf{z}) = h_0(t) \exp(\mathbf{z}' \gamma)$$
 ; $S(t|\mathbf{z}) = S_0(t)^{\exp(\mathbf{z}' \gamma)}$

Unconditional (on N) population survival function :

$$S^{*}(t|\mathbf{x}, \mathbf{z}) = \exp\left[-\theta(\mathbf{x})F(t|\mathbf{z})\right]$$

= $\exp\left[-\exp\left(\beta_{0} + \mathbf{x}'\boldsymbol{\beta}\right)\left(1 - S_{0}(t)^{\exp(\mathbf{z}'\boldsymbol{\gamma})}\right)\right]$ (1)

The promotion time model : Identification issue

- Usual assumptions :
 - i) The vector **z** of covariates does not include an intercept to ensure the identifiability of the Cox PH model.
 - ii) The baseline distribution function $F_0(t) = 1 S_0(t)$ is a proper distribution function : $\lim_{t\to\infty} F_0(t) = 1$
- Under i) and ii) we can show that :
 - A) If the follow up of the study is sufficently long then model (1) is identifiable.
 - B) If the follow up of the study is not sufficiently long then model (1) is not identifiable unless vectors \mathbf{x} and \mathbf{z} do not share the same components.

The promotion time model : Remarks

• $S^*(t|\mathbf{x}, \mathbf{z})$ is an improper survival function :

$$lim_{t\to\infty}S^*(t|\mathbf{x},\mathbf{z}) = \exp\left[-\exp\left(\beta_0 + \mathbf{x'}\boldsymbol{\beta}\right)\right] > 0$$

Remember that if the subject is not exposed to any carcogenic cell (if N = 0) then (s)he is considered as cured.

 \hookrightarrow The probability of being cured is :

$$P(N = 0) = \exp \left[-\theta \left(\mathbf{x}\right)\right]$$
$$= \exp \left[-\exp \left(\beta_0 + \mathbf{x'}\beta\right)\right]$$
$$= \lim_{t \to \infty} S^*(t|\mathbf{x}, \mathbf{z})$$

Vincent Bremhorst (UCL - ISBA)

Outline of the talk

Introduction

The promotion time model

Estimation

Bayesian analysis

Simulation Study

___ ▶

э

Estimation

► We estimate the latent distribution F(t|z) of (1) using a linear combinaison of cubic B-splines on log(h₀(t)) :

$$\hat{h}_0(t) = \exp\left(\sum_{k=1}^K b_k(t)\phi_k
ight) = \exp\left(B_t\phi
ight)$$

where $(b_k(.), k = 1, ...K)$ denote the cubic B-splines basis associated to a predefined number of equidistant knots defined on $[0, t_{Rcens}]$, where t_{Rcens} is the upper bound of the follow up.

Estimation

Knowing the relation between the survival and the hazard functions, we obtain the estimation of the baseline survival function :

$$\hat{S}_0(t) = \exp\left(-\int_0^t \exp\left(B_u\phi\right) du\right)$$

 \hookrightarrow The integral in this expression has no analytic form and needs to be evaluated numerically. We use **the rectangle method**.

Estimation : Rectangle method

- ▶ Partition of $[0, t_{Rcens}]$ into J small intervals of equal width : $J_j = [\tau_{j-1}, \tau_j]$ where $0 = \tau_0 < \tau_1 < ... < \tau_J = t_{Rcens}$.
- Define
 - The middle of the j^{th} interval : $u_j = \frac{\tau_j \tau_{j-1}}{2}$;
 - The length of the j^{th} interval : $\delta_j = \tau_j \tau_{j-1}$

 \hookrightarrow The baseline survival function can be approximated by :

$$\hat{S}_0(t) pprox \exp\left(-\sum_{j=1}^{j(t)} \left[\exp\left(B_{u_j}\phi\right)\right] \delta_j\right)$$

where j(t) corresponds to the interval containing t.

Estimation

Regularisation

Roughness penalty : We choose a large number (say K) of B-splines and countrebalance the flexibility by introducing a penalty on finite differences of adjacent B-spline parameters :

 $\tau \sum_{k} (\Delta^{r} \phi_{k})^{2} = \tau \phi' \mathbf{D}' \mathbf{D} \phi$, where τ is the penalty parameter. (Eilers and Marx 1996)

For example, when we use a third order penalty, the matrix D is given by :

$$\mathbf{D} = \begin{bmatrix} 1 & -3 & 3 & -1 & 0 & \dots & 0 \\ 0 & 1 & -3 & 3 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & -3 & 3 & -1 \end{bmatrix}$$

Graphical illustrations

- Number of knots : 12
- b_k(t) > 0 for only 3 values of k

- blue curves $\equiv B_t \hat{\phi}$
- red curve ≡ Estimation of log(h₀(t))

Vincent Bremhorst (UCL - ISBA)

Likelihood

• Contribution of the *i*th subject to the likelihood :

$$L(D_i, \Phi) = \hat{S}^*(t_i | \mathbf{x}_i, \mathbf{z}_i)(\hat{h}^*(t_i | \mathbf{x}_i, \mathbf{z}_i))^{\nu_i}$$

where

- $\blacktriangleright D_i = (t_i, \nu_i, \mathbf{x_i}, \mathbf{z_i});$
- ν_i is the event indicator;
- Φ is the set of all parameters specific to the model;
- $\hat{h}^*(t|\mathbf{x}, \mathbf{z})$ is the corresponding hazard function.

Outline of the talk

Introduction

The promotion time model

Estimation

Bayesian analysis

Simulation Study

э

Bayesian model

In a Bayesian setting, the roughness penalty is translated into a prior distribution for φ :

$$\pi(\phi| au) \propto au^{rac{
ho({f P})}{2}} \exp\left(-rac{ au}{2} \phi' {f P} \phi
ight) \qquad ext{where} \qquad {f P} = {f D}' {f D}$$

 \blacktriangleright We use a common non-informative prior for τ :

$$\pi(au) \propto G(a(=1), b(=10^{-4}))$$

▶ We use an improper uniform prior for all the regression parameters :

$$egin{array}{ll} \pi(eta_i) \propto 1 & orall i \in I_{oldsymbol{eta}} \ \pi(\gamma_j) \propto 1 & orall i \in I_{oldsymbol{\gamma}} \end{array}$$

Posterior distribution

Using the Bayes' theorem, the joint posterior distribution is given by :

$$\pi(oldsymbol{\phi}, au,eta_0,oldsymbol{eta},oldsymbol{\gamma}|\mathbf{\mathsf{D}},I)\propto L(\mathbf{\mathsf{D}},\Phi)\pi(oldsymbol{\phi}| au)\pi(au)$$

Only the conditional posterior distribution for the penalty parameter comes from a well known family :

$$\pi(au|oldsymbol{\phi}, {\it D}, {\it I}) \propto {\it G}\left({\it a} + rac{
ho({\it P})}{2}, {\it b} + rac{ \phi' {\it P} \phi}{2}
ight)$$

MCMC algorithm

- Gibbs step for τ ;
- Adaptive univariate Metropolis step for φ, β₀, β and γ (Haario et Al. 2001);
- Experience shows that the mixing of the posterior chain of the spline parameters can be very slow.

 \hookrightarrow Applying the adaptive Metropolis step on a reparametrized posterior distribution can improve the mixing of the chain;

 \hookrightarrow We estimate the correlation structure of the spline parameters using the link between survival data and the Poisson GLM ;

 \hookrightarrow We reparametrize the posterior distribution of the spline parameters using the obtained estimation.

Outline of the talk

Introduction

The promotion time model

Estimation

Bayesian analysis

Simulation Study

э

Set up

- ► The baseline hazard function h₀(t) is related to a Weibull distribution with mean 10.8 and standard deviation 5.64
- 2 covariates are taken into account :

 $W_1 \sim N(0,1)$ and $W_2 \sim B(1,0.5)$

- Both covariates enter through the parameter θ and through the Cox PH model : x = (W₁, W₂) = z
- Sample size : n = 500
- Number of replications : S = 200
- ▶ Splines are defined on 12 knots and a 3rd order penalty is used

Investigated Scenarios

▶ In each scenario, a sufficient follow up is assumed.

Cured (%)	Cured censored (%)	Suceptible censored (%)	Global censoring (%)
20%	0%	0%	0%
20%	47%	8%	18%
400/	00/	00/	00/
40%	0%	0%	0%
40%	46%	7%	25%
Vincent Bremhorst (UCL - 1	SBA) Young Re	searchers' Day	- - - - - - - - - - - - - -

Results of the simulations : Regression parameters

Global censoring (%)		Estimation	L _{95%}	U _{95%}	ESE	RMSE
0%	$\beta_0 = 0.65$	0.624	0.396	0.888	0.129	0.017
	$\beta_1 = 1.2$	1.146	0.932	1.394	0.127	0.018
	$\beta_2 = 0.5$	0.521	0.227	0.809	0.144	0.021
	$\gamma_1 = -1$	-0.910	-1.169	-0.670	0.130	0.150
	$\gamma_2 = 2.5$	2.386	1.974	2.826	0.212	0.239
18%	$\beta_0 = 0.65$	0.625	0.369	0.933	0.142	0.020
	$\beta_1 = 1.2$	1.170	0.932	1.437	0.133	0.018
	$\beta_2 = 0.5$	0.528	0.199	0.847	0.163	0.027
	$\gamma_1 = -1$	-0.941	-1.204	-0.679	0.137	0.143
	$\gamma_2 = 2.5$	2.411	1.971	2.884	0.237	0.256

20% of cured individuals

Vincent Bremhorst (UCL - ISBA)

Results of the simulations : Regression parameters

Global censoring (%)		Estimation	L _{95%}	U _{95%}	ESE	RMSE
0%	$\beta_0 = 0.4$	0.337	0.112	0.619	0.120	0.017
	$\beta_1 = 1.75$	1.620	1.384	1.889	0.132	0.032
	$\beta_2 = -0.75$	-0.668	-1.015	-0.352	0.182	0.040
	$\gamma_1 = -1$	-0.816	-1.082	-0.557	0.147	0.229
	$\gamma_2 = 2.5$	2.350	1.964	2.769	0.202	0.243
25%	$\beta_0 = 0.4$	0.355	0.081	0.687	0.144	0.022
	$\beta_1 = 1.75$	1.635	1.365	1.929	0.144	0.032
	$\beta_2 = -0.75$	-0.659	-1.079	-0.316	0.208	0.048
	$\gamma_1 = -1$	-0.837	-1.134	-0.552	0.157	0.218
	$\gamma_2 = 2.5$	2.369	1.942	2.856	0.226	0.250

40% of cured individuals

Vincent Bremhorst (UCL - ISBA)

Conclusions of the simulations

- Regression parameters :
 - The point estimates are quite similar;
 - The width of the confidence interval for each parameter increases when we introduce right censoring;
 - For each parameter, the RMSE is quite similar whatever the considered scenario.

Conclusion of the simulations

Baseline survival function :

FIGURE: 20% of cured subjects. Left : Without right censoring ; Right : With right censoring

Conclusion of the simulations

Baseline survival function :

FIGURE: 40% of cured subjects. Left : Without right censoring ; Right : With right censoring

Further work

- Simulations using a bimodal distribution for the baseline distribution.
- Applying model (1) on a real data set.
- ► Can we find a covariates structure for F(t|z) such that model (1) is identifiable without a sufficient follow up when x and z share some components?
- Generalization to interval censored data.
- Generalization to hierarchical data.

Some references

[1] Chen, M.-H., Ibrahim, J.G. and Sinha, D. (1999), "A New Bayesian Model for Survival Data with a Surviving Fraction." *Journal of the American Statistical Association.* 94, 909-919.

[2] Cooner, F., Banerjee, S., Carlin, B.P. and Sinha, D. (2007), "Flexible cure rate modelling under latent activation schemes" *Journal of the American Statistical Association*, 102, 360-72.

[3] Eilers, P. H. C. and Marx, B. D. (1996) "Flexible smoothing with B-splines and penalties (with discussion)" *Statistical Sciences*, 11, 89-121.
[4] Lang, S., Brezger, A., 2004. "Bayesian P-splines." *J. Comput. Graphical Statist.*, 13, 183-212.

[5] Lambert, P. 2007. "Archimedean copula estimation using Bayesian splines smoothing techniques." *Computational Statistics and data Analysis*, 51,6307-6320.

イロト イポト イヨト イヨト