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Nonparametric reconstruction of the tree structure of a
nested archimedean copula
Nathan Uyttendaele (nathan.uyttendaele@uclouvain.be)

One of the features inherent in nested Archimedean copulas, also called hierarchi-
cal Archimedean copulas, is their rooted tree structure. In this paper, a completely
nonparametric method to estimate this structure is developed. Our approach con-
sist in representing the rooted tree structure as a set of trivariate structures that
can be individually estimated. Indeed, for any triple of variables there are only
four possible rooted tree structures and, based on a sample, a choice can be made
by performing comparisons between the three marginal empirical bivariate distri-
butions of the triple. The set of estimated trivariate structures can then be used to
build an estimate of the mother rooted tree structure. This approach leads to an
estimator that has reasonable properties, and a simulation study strongly suggest
it can be made a consistent estimator for any nested Archimedean copula rooted
tree structure.
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Goodnest of fit tests in semiparametric transformation mod-
els
Benjamin Colling (benjamin.colling@uclouvain.be)

Taking transformations of the data has been an important part of statistical
practice for many years. A major contribution to this methodology was made by
Box and Cox (1964), who proposed a parametric power family of transformations
that includes the logarithm and the identity. They suggested that the power trans-
formation, when applied to the dependent variable in a linear regression model,
might induce normality and homoscedasticity. The transformation methodology
has been quite successful and a large literature exists on this topic for paramet-
ric models. See Carroll and Ruppert (1988) and Sakia (1992) and the references
therein.
Consider a semiparametric transformation model of the form

Λθ0(Y ) = m(X) + ε ,

where Y is a univariate dependent variable, X is a 1-dimensional covariate, and ε
is independent of X and has mean zero. We assume that {Λθ : θ ∈ Θ} is a para-
metric family of strictly increasing functions, while m is the unknown regression
function. This model has been extensively studied by Linton, Sperlich and Van
Keilegom (2008). They proposed two estimation methods for the unknown true
parameter vector θ0 : a profile likelihood method and a mean squared distance from
independence-method. Here, we will use the profile likelihood estimator denoted
by θ̂, since it has been shown that it outperforms the other estimator.
The goal is to develop a test for the parametric form of the regression function

m. We like to test the hypothesis

H0 : m ∈M H1 : m /∈M ,

whereM = {mβ : β ∈ B} is some parametric class of regression functions and B ⊂
Rp. The two test statistics that we’ll use are the Kolmogorov-Smirnov type statistic
and the Cramer-von Mises type statistic, where the basic idea is to compare the
distribution function of ε estimated in a nonparametric way to the distribution
function of ε estimated under the null hypothesis :

TKS = n1/2 sup
y∈R
|F̂ε(y)− F̂ε0(y)|

and
TCM = n

∫
(F̂ε(y)− F̂ε0(y))2 dF̂ε(y) ,

where
F̂ε(y) = n−1

n∑
i=1

I(ε̂i ≤ y) ,
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ε̂i = Λ
θ̂
(Yi) − m̂(Xi, θ̂) are the nonparametric residuals, and m̂ is the Nadaraya-

Watson estimator of the function m. Moreover,

F̂ε0(y) = n−1
n∑
i=1

I(ε̂i0 ≤ y) ,

where ε̂i0 = Λ
θ̂
(Yi) − mβ̂

(Xi, θ̂) are the residuals estimated under H0 and β̂ is a
minimizer over β ∈ B of the expression n−1 ∑n

i=1(Λ
θ̂
(Yi)−mβ(Xi))2.

We prove that the empirical process n1/2(F̂ε(y) − F̂ε0(y)), y ∈ R, converge to
fε(y)W where W has a normal distribution with zero mean and finite variance.
Hence we can deduce the asymptotic distributions of the two test statistics under
H0 and under a local alternative. We see that these limiting distributions depend
on the normal random variable W .
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The Simex method for correcting the bias in a survival cure
model with mismeasured covariates
Aurélie Bertrand (aurélie.bertrand@uclouvain.be)

In traditional survival analysis, all subjects in the population are assumed to
be susceptible to the event of interest, that is, every subject has either already
experienced the event or will experience it in the future. In many situations,
however, it may happen that a fraction of individuals (long-term survivors) will
never experience the event, that is, they are considered to be event free. The
promotion time cure model is one of the survival models taking this feature into
account.
We consider the case where the explanatory variables in the model are supposed

to be subject to measurement error. This occurs e.g. when the instrument used to
measure the variable (blood pressure, cholesterol level, etc.) has some calibration
error. This measurement error should be taken into account in the estimation of
the model, to avoid biased estimators of the model. Several approaches exist in
the literature that correct for the presence of measurement error: they have been
applied in survival models without a cure fraction, in the promotion time cure
model (a corrected score approach has been proposed by Ma and Yin, 2008), or in
other fields (the SIMEX algorithm).
We extend the SIMEX approach to the promotion time cure model. We show

via simulations that the suggested method performs well in practice by comparing
it with the method proposed by Ma and Yin (2008), which is, as far as we know,
the only paper that has studied this problem before in the literature.
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Estimation of the latent distribution in cure survival models
using a flexible Cox Model
Vincent Bremhorst (vincent.bremhorst@uclouvain.be)

A common hypothesis in the analysis of survival data is that any observed unit
will experience the monitored event if it is observed for a sufficient long time.
Alternatively, one can explicitly acknowledge that an unknown and unidentified
proportion of the patient population under study is cured and will never experi-
ence the event of interest. The promotion time model, which is motivated using
biological mechanisms in the development of cancer, is one of the survival models
taking this feature into account. The promotion time model assumes that each
subject is exposed to N carcogenic cells. Given this number of carcogenic cells,
we define latent event times (Y1, ..., YN), which are independent with a common
distribution F (t) = 1−S(t) and can be seen as incubation time. Since we assume
that 1 out of N latent factors need to be activated, the observed failure time is
defined as the minimum of the latent event times.
In this work, we estimate the latent distribution F (t) using a flexible Cox pro-
portional hazard model where the logarithm of the baseline hazard function is
specified using Bayesian P-splines. The identification issues of the related model
are also investigated.
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The copula-graphic estimator in censored nonparametric
location-scale regression models
Aleksandar Sujica (aleksandar.sujica@uclouvain.be)

A common assumption when working with randomly right censored data, is
the independence between the variable of interest Y (the "survival time") and the
censoring variable C. This assumption, which is not testable, is however unrealistic
in certain situations. In this paper we assume that for a given X, the dependence
between the variables Y and C is described via a known copula. Additionally
we assume that Y is the response variable of a heteroscedastic regression model
Y = m(X) +σ(X)ε, where the explanatory variable X is independent of the error
term ε, and the functions m and σ are ‘smooth’. We propose an estimator of the
conditional distribution of Y given X under this model, and show the asymptotic
normality of this estimator. When estimating from right censored data there is
always an area in the right tail where the survival function can not be estimated
consistently. In our approach we are forced to estimate that area for pre-estimation
of the conditional survival function. We also study the small sample performance
of the estimator, and discuss the advantages/drawbacks of this estimator with
respect to competing estimators.
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